Your browser doesn't support javascript.
loading
Selinene Volatiles Are Essential Precursors for Maize Defense Promoting Fungal Pathogen Resistance.
Ding, Yezhang; Huffaker, Alisa; Köllner, Tobias G; Weckwerth, Philipp; Robert, Christelle A M; Spencer, Joseph L; Lipka, Alexander E; Schmelz, Eric A.
Afiliación
  • Ding Y; Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0380.
  • Huffaker A; Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0380.
  • Köllner TG; Department of Biochemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.
  • Weckwerth P; Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0380.
  • Robert CAM; Institute of Plant Sciences, University of Bern, Bern CH-3013 Switzerland.
  • Spencer JL; Illinois Natural History Survey, University of Illinois, Champaign, Illinois 61820.
  • Lipka AE; Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801.
  • Schmelz EA; Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0380 eschmelz@ucsd.edu.
Plant Physiol ; 175(3): 1455-1468, 2017 Nov.
Article en En | MEDLINE | ID: mdl-28931629
ABSTRACT
To ensure food security, maize (Zea mays) is a model crop for understanding useful traits underlying stress resistance. In contrast to foliar biochemicals, root defenses limiting the spread of disease remain poorly described. To better understand belowground defenses in the field, we performed root metabolomic profiling and uncovered unexpectedly high levels of the sesquiterpene volatile ß-selinene and the corresponding nonvolatile antibiotic derivative ß-costic acid. The application of metabolite-based quantitative trait locus mapping using biparental populations, genome-wide association studies, and near-isogenic lines enabled the identification of terpene synthase21 (ZmTps21) on chromosome 9 as a ß-costic acid pathway candidate gene. Numerous closely examined ß-costic acid-deficient inbred lines were found to harbor Zmtps21 pseudogenes lacking conserved motifs required for farnesyl diphosphate cyclase activity. For biochemical validation, a full-length ZmTps21 was cloned, heterologously expressed in Escherichia coli, and demonstrated to cyclize farnesyl diphosphate, yielding ß-selinene as the dominant product. Consistent with microbial defense pathways, ZmTps21 transcripts strongly accumulate following fungal elicitation. Challenged field roots containing functional ZmTps21 alleles displayed ß-costic acid levels over 100 µg g-1 fresh weight, greatly exceeding in vitro concentrations required to inhibit the growth of five different fungal pathogens and rootworm larvae (Diabrotica balteata). In vivo disease resistance assays, using ZmTps21 and Zmtps21 near-isogenic lines, further support the endogenous antifungal role of selinene-derived metabolites. Involved in the biosynthesis of nonvolatile antibiotics, ZmTps21 exists as a useful gene for germplasm improvement programs targeting optimized biotic stress resistance.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Enfermedades de las Plantas / Sesquiterpenos / Zea mays / Compuestos Orgánicos Volátiles / Resistencia a la Enfermedad / Fusarium Idioma: En Revista: Plant Physiol Año: 2017 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Enfermedades de las Plantas / Sesquiterpenos / Zea mays / Compuestos Orgánicos Volátiles / Resistencia a la Enfermedad / Fusarium Idioma: En Revista: Plant Physiol Año: 2017 Tipo del documento: Article