Your browser doesn't support javascript.
loading
Peroxynitrite preferentially oxidizes the dithiol redox motifs of protein-disulfide isomerase.
Peixoto, Álbert Souza; Geyer, R Ryan; Iqbal, Asif; Truzzi, Daniela R; Soares Moretti, Ana I; Laurindo, Francisco R M; Augusto, Ohara.
Afiliación
  • Peixoto ÁS; From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, CEP 05508-000, Brazil and.
  • Geyer RR; From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, CEP 05508-000, Brazil and.
  • Iqbal A; From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, CEP 05508-000, Brazil and.
  • Truzzi DR; From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, CEP 05508-000, Brazil and.
  • Soares Moretti AI; Vascular Biology Laboratory, Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, CEP 05403-000, Brazil.
  • Laurindo FRM; Vascular Biology Laboratory, Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, CEP 05403-000, Brazil.
  • Augusto O; From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, CEP 05508-000, Brazil and oaugusto@iq.usp.br.
J Biol Chem ; 293(4): 1450-1465, 2018 01 26.
Article en En | MEDLINE | ID: mdl-29191937
ABSTRACT
Protein-disulfide isomerase (PDI) is a ubiquitous dithiol-disulfide oxidoreductase that performs an array of cellular functions, such as cellular signaling and responses to cell-damaging events. PDI can become dysfunctional by post-translational modifications, including those promoted by biological oxidants, and its dysfunction has been associated with several diseases in which oxidative stress plays a role. Because the kinetics and products of the reaction of these oxidants with PDI remain incompletely characterized, we investigated the reaction of PDI with the biological oxidant peroxynitrite. First, by determining the rate constant of the oxidation of PDI's redox-active Cys residues (Cys53 and Cys397) by hydrogen peroxide (k = 17.3 ± 1.3 m-1 s-1 at pH 7.4 and 25 °C), we established that the measured decay of the intrinsic PDI fluorescence is appropriate for kinetic studies. The reaction of these PDI residues with peroxynitrite was considerably faster (k = (6.9 ± 0.2) × 104 m-1 s-1), and both Cys residues were kinetically indistinguishable. Limited proteolysis, kinetic simulations, and MS analyses confirmed that peroxynitrite preferentially oxidizes the redox-active Cys residues of PDI to the corresponding sulfenic acids, which reacted with the resolving thiols at the active sites to produce disulfides (i.e. Cys53-Cys56 and Cys397-Cys400). A fraction of peroxynitrite, however, decayed to radicals that hydroxylated and nitrated other active-site residues (Trp52, Trp396, and Tyr393). Excess peroxynitrite promoted further PDI oxidation, nitration, inactivation, and covalent oligomerization. We conclude that these PDI modifications may contribute to the pathogenic mechanism of several diseases associated with dysfunctional PDI.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Tolueno / Procolágeno-Prolina Dioxigenasa / Proteína Disulfuro Isomerasas / Ácido Peroxinitroso Límite: Humans Idioma: En Revista: J Biol Chem Año: 2018 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Tolueno / Procolágeno-Prolina Dioxigenasa / Proteína Disulfuro Isomerasas / Ácido Peroxinitroso Límite: Humans Idioma: En Revista: J Biol Chem Año: 2018 Tipo del documento: Article