Your browser doesn't support javascript.
loading
Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning.
Schlegl, Thomas; Waldstein, Sebastian M; Bogunovic, Hrvoje; Endstraßer, Franz; Sadeghipour, Amir; Philip, Ana-Maria; Podkowinski, Dominika; Gerendas, Bianca S; Langs, Georg; Schmidt-Erfurth, Ursula.
Afiliación
  • Schlegl T; Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology, Medical University Vienna, Vienna, Austria; Computational Imaging Research Lab Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria.
  • Waldstein SM; Department of Ophthalmology, Medical University of Vienna, Vienna, Austria.
  • Bogunovic H; Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology, Medical University Vienna, Vienna, Austria.
  • Endstraßer F; Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology, Medical University Vienna, Vienna, Austria.
  • Sadeghipour A; Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology, Medical University Vienna, Vienna, Austria.
  • Philip AM; Vienna Reading Center, Department of Ophthalmology, Medical University of Vienna, Vienna, Austria.
  • Podkowinski D; Vienna Reading Center, Department of Ophthalmology, Medical University of Vienna, Vienna, Austria.
  • Gerendas BS; Department of Ophthalmology, Medical University of Vienna, Vienna, Austria.
  • Langs G; Computational Imaging Research Lab Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria.
  • Schmidt-Erfurth U; Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology, Medical University Vienna, Vienna, Austria; Department of Ophthalmology, Medical University of Vienna, Vienna, Austria. Electronic address: ursula.schmidt-erfurth@meduniwien.ac.at.
Ophthalmology ; 125(4): 549-558, 2018 04.
Article en En | MEDLINE | ID: mdl-29224926
PURPOSE: Development and validation of a fully automated method to detect and quantify macular fluid in conventional OCT images. DESIGN: Development of a diagnostic modality. PARTICIPANTS: The clinical dataset for fluid detection consisted of 1200 OCT volumes of patients with neovascular age-related macular degeneration (AMD, n = 400), diabetic macular edema (DME, n = 400), or retinal vein occlusion (RVO, n = 400) acquired with Zeiss Cirrus (Carl Zeiss Meditec, Dublin, CA) (n = 600) or Heidelberg Spectralis (Heidelberg Engineering, Heidelberg, Germany) (n = 600) OCT devices. METHODS: A method based on deep learning to automatically detect and quantify intraretinal cystoid fluid (IRC) and subretinal fluid (SRF) was developed. The performance of the algorithm in accurately identifying fluid localization and extent was evaluated against a manual consensus reading of 2 masked reading center graders. MAIN OUTCOME MEASURES: Performance of a fully automated method to accurately detect, differentiate, and quantify intraretinal and SRF using area under the receiver operating characteristics curves, precision, and recall. RESULTS: The newly designed, fully automated diagnostic method based on deep learning achieved optimal accuracy for the detection and quantification of IRC for all 3 macular pathologies with a mean accuracy (AUC) of 0.94 (range, 0.91-0.97), a mean precision of 0.91, and a mean recall of 0.84. The detection and measurement of SRF were also highly accurate with an AUC of 0.92 (range, 0.86-0.98), a mean precision of 0.61, and a mean recall of 0.81, with superior performance in neovascular AMD and RVO compared with DME, which was represented rarely in the population studied. High linear correlation was confirmed between automated and manual fluid localization and quantification, yielding an average Pearson's correlation coefficient of 0.90 for IRC and of 0.96 for SRF. CONCLUSIONS: Deep learning in retinal image analysis achieves excellent accuracy for the differential detection of retinal fluid types across the most prevalent exudative macular diseases and OCT devices. Furthermore, quantification of fluid achieves a high level of concordance with manual expert assessment. Fully automated analysis of retinal OCT images from clinical routine provides a promising horizon in improving accuracy and reliability of retinal diagnosis for research and clinical practice in ophthalmology.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Oclusión de la Vena Retiniana / Edema Macular / Diagnóstico por Computador / Tomografía de Coherencia Óptica / Retinopatía Diabética / Degeneración Macular Húmeda / Líquido Subretiniano / Aprendizaje Profundo Tipo de estudio: Diagnostic_studies / Guideline / Prognostic_studies Límite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Ophthalmology Año: 2018 Tipo del documento: Article País de afiliación: Austria

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Oclusión de la Vena Retiniana / Edema Macular / Diagnóstico por Computador / Tomografía de Coherencia Óptica / Retinopatía Diabética / Degeneración Macular Húmeda / Líquido Subretiniano / Aprendizaje Profundo Tipo de estudio: Diagnostic_studies / Guideline / Prognostic_studies Límite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Ophthalmology Año: 2018 Tipo del documento: Article País de afiliación: Austria