Reductive Elimination Leading to C-C Bond Formation in Gold(III) Complexes: A Mechanistic and Computational Study.
Chemistry
; 24(35): 8893-8903, 2018 Jun 21.
Article
en En
| MEDLINE
| ID: mdl-29655303
The factors affecting the rates of reductive C-C cross-coupling reactions in gold(III) aryls were studied by using complexes that allow easy access to a series of electronically modified aryl ligands, as well as to gold methyl and vinyl complexes, by using the pincer compounds [(C^N^C)AuR] (R=C6 F5 , CH=CMe2 , Me and p-C6 H4 X, where X=OMe, F, H, tBu, Cl, CF3 , or NO2 ) as starting materials (C^N^C=2,6-(4'-tBuC6 H3 )2 pyridine dianion). Protodeauration followed by addition of one equivalent SMe2 leads to the quantitative generation of the thioether complexes [(C^N-CH)AuR(SMe2 )]+ . Upon addition of a second SMe2 pyridine is displaced, which triggers the reductive aryl-R elimination. The rates for these cross-couplings increase in the sequence k(vinyl)>k(aryl)â«k(C6 F5 )>k(Me). Vinyl-aryl coupling is particularly fast, 1.15×10-3 â
L mol-1 s-1 at 221â
K, whereas both C6 F5 and Me couplings encountered higher barriers for the C-C bond forming step. The use of P(p-tol)3 in place of SMe2 greatly accelerates the C-C couplings. Computational modelling shows that in the C^N-bonded compounds displacement of N by a donor L is required before the aryl ligands can adopt a conformation suitable for C-C bond formation, so that elimination takes place from a four-coordinate intermediate. The C-C bond formation is the rate-limiting step. In the non-chelating case, reductive C(sp2 )-C(sp2 ) elimination from three-coordinate ions [(Ar1 )(Ar2 )AuL]+ is almost barrier-free, particularly if L=phosphine.
Texto completo:
1
Banco de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Chemistry
Asunto de la revista:
QUIMICA
Año:
2018
Tipo del documento:
Article