Your browser doesn't support javascript.
loading
Alternative splicing induces cytoplasmic localization of RBFOX2 protein in calcific tendinopathy.
Cho, Namjoon; Kim, Jong Ok; Lee, Siyeo; Choi, Sunkyung; Kim, Jaewhan; Ko, Myung-Sup; Park, Seok-Jae; Ji, Jong-Hun; Kim, Kee K.
Afiliación
  • Cho N; Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea.
  • Kim JO; Department of Pathology, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea.
  • Lee S; Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea.
  • Choi S; Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea.
  • Kim J; Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea.
  • Ko MS; Department of Orthopedic Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea.
  • Park SJ; Department of Orthopedic Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea.
  • Ji JH; Department of Orthopedic Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea. Electronic address: jijh87@gmail.com.
  • Kim KK; Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea. Electronic address: kimkk@cnu.ac.kr.
Exp Mol Pathol ; 109: 36-41, 2019 08.
Article en En | MEDLINE | ID: mdl-31128090
ABSTRACT

BACKGROUND:

Calcific tendinopathy (CT) is characterized by deposits of calcium, most commonly found in the shoulder tendons. The exact cause and pathogenesis of CT are not fully understood. This study analyzed the expression pattern of RNA-binding protein fox-1 homolog 2 (RBFOX2), a crucial splicing regulator in tissue differentiation.

METHODS:

Normal and calcific tendons were compared for RBFOX2 mRNA level using quantitative reverse-transcription polymerase chain reaction. Intracellular localization of RBFOX2 protein was investigated using immunofluorescence microscopy. Normal and calcific tendon cDNAs were used to clone RBFOX2. Sequencing analysis identified coding sequences of the RBFOX2 isoform.

RESULTS:

The intracellular localization of RBFOX2 protein differed with disease status, with RBFOX2 localized in the cytoplasm in calcific tendons and the nucleus in normal tendons. Analysis of the RBFOX2 protein-coding sequence showed that exon 10, responsible for nuclear localization, was absent in calcific tendons. Splicing of RBFOX2 target genes CHD2 and MBNL1 was significantly affected by cytoplasmic localization of RBFOX2 in calcific tendons.

DISCUSSION:

Given the function of RBFOX2 as a splicing regulator in the nucleus, cytoplasmic localization of RBFOX2 protein in calcific tendons may have affected overall splicing events and altered gene expression. These results provide insights for comprehension of CT pathogenesis.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteínas Represoras / Empalme Alternativo / Citoplasma / Tendinopatía / Factores de Empalme de ARN Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Exp Mol Pathol Año: 2019 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteínas Represoras / Empalme Alternativo / Citoplasma / Tendinopatía / Factores de Empalme de ARN Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Exp Mol Pathol Año: 2019 Tipo del documento: Article