Contact Engineering High-Performance n-Type MoTe2 Transistors.
Nano Lett
; 19(9): 6352-6362, 2019 Sep 11.
Article
en En
| MEDLINE
| ID: mdl-31314531
Semiconducting MoTe2 is one of the few two-dimensional (2D) materials with a moderate band gap, similar to silicon. However, this material remains underexplored for 2D electronics due to ambient instability and predominantly p-type Fermi level pinning at contacts. Here, we demonstrate unipolar n-type MoTe2 transistors with the highest performance to date, including high saturation current (>400 µA/µm at 80 K and >200 µA/µm at 300 K) and relatively low contact resistance (1.2 to 2 kΩ·µm from 80 to 300 K), achieved with Ag contacts and AlOx encapsulation. We also investigate other contact metals (Sc, Ti, Cr, Au, Ni, Pt), extracting their Schottky barrier heights using an analytic subthreshold model. High-resolution X-ray photoelectron spectroscopy reveals that interfacial metal-Te compounds dominate the contact resistance. Among the metals studied, Sc has the lowest work function but is the most reactive, which we counter by inserting monolayer hexagonal boron nitride between MoTe2 and Sc. These metal-insulator-semiconductor (MIS) contacts partly depin the metal Fermi level and lead to the smallest Schottky barrier for electron injection. Overall, this work improves our understanding of n-type contacts to 2D materials, an important advance for low-power electronics.
Texto completo:
1
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Nano Lett
Año:
2019
Tipo del documento:
Article
País de afiliación:
Estados Unidos