Your browser doesn't support javascript.
loading
Ca2+-Activated K+ Channels Reduce Network Excitability, Improving Adaptability and Energetics for Transmitting and Perceiving Sensory Information.
Li, Xiaofeng; Abou Tayoun, Ahmad; Song, Zhuoyi; Dau, An; Rien, Diana; Jaciuch, David; Dongre, Sidhartha; Blanchard, Florence; Nikolaev, Anton; Zheng, Lei; Bollepalli, Murali K; Chu, Brian; Hardie, Roger C; Dolph, Patrick J; Juusola, Mikko.
Afiliación
  • Li X; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
  • Abou Tayoun A; Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom.
  • Song Z; Department of Biology, Dartmouth College, Hanover, New Hampshire 03755.
  • Dau A; Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom.
  • Rien D; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China, and.
  • Jaciuch D; Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom.
  • Dongre S; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
  • Blanchard F; Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom.
  • Nikolaev A; Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom.
  • Zheng L; Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom.
  • Bollepalli MK; Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom.
  • Chu B; Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom.
  • Hardie RC; Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom.
  • Dolph PJ; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China, and.
  • Juusola M; Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom.
J Neurosci ; 39(36): 7132-7154, 2019 09 04.
Article en En | MEDLINE | ID: mdl-31350259
ABSTRACT
Ca2+-activated K+ channels (BK and SK) are ubiquitous in synaptic circuits, but their role in network adaptation and sensory perception remains largely unknown. Using electrophysiological and behavioral assays and biophysical modeling, we discover how visual information transfer in mutants lacking the BK channel (dSlo- ), SK channel (dSK- ), or both (dSK- ;; dSlo- ) is shaped in the female fruit fly (Drosophila melanogaster) R1-R6 photoreceptor-LMC circuits (R-LMC-R system) through synaptic feedforward-feedback interactions and reduced R1-R6 Shaker and Shab K+ conductances. This homeostatic compensation is specific for each mutant, leading to distinctive adaptive dynamics. We show how these dynamics inescapably increase the energy cost of information and promote the mutants' distorted motion perception, determining the true price and limits of chronic homeostatic compensation in an in vivo genetic animal model. These results reveal why Ca2+-activated K+ channels reduce network excitability (energetics), improving neural adaptability for transmitting and perceiving sensory information.SIGNIFICANCE STATEMENT In this study, we directly link in vivo and ex vivo experiments with detailed stochastically operating biophysical models to extract new mechanistic knowledge of how Drosophila photoreceptor-interneuron-photoreceptor (R-LMC-R) circuitry homeostatically retains its information sampling and transmission capacity against chronic perturbations in its ion-channel composition, and what is the cost of this compensation and its impact on optomotor behavior. We anticipate that this novel approach will provide a useful template to other model organisms and computational neuroscience, in general, in dissecting fundamental mechanisms of homeostatic compensation and deepening our understanding of how biological neural networks work.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Percepción Visual / Células Fotorreceptoras de Invertebrados / Retroalimentación Fisiológica / Canales de Potasio de Gran Conductancia Activados por el Calcio / Canales de Potasio de Pequeña Conductancia Activados por el Calcio / Potenciales Sinápticos Límite: Animals Idioma: En Revista: J Neurosci Año: 2019 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Percepción Visual / Células Fotorreceptoras de Invertebrados / Retroalimentación Fisiológica / Canales de Potasio de Gran Conductancia Activados por el Calcio / Canales de Potasio de Pequeña Conductancia Activados por el Calcio / Potenciales Sinápticos Límite: Animals Idioma: En Revista: J Neurosci Año: 2019 Tipo del documento: Article País de afiliación: China