Green Production of Regenerated Cellulose/Boron Nitride Nanosheet Textiles for Static and Dynamic Personal Cooling.
ACS Appl Mater Interfaces
; 11(43): 40685-40693, 2019 Oct 30.
Article
en En
| MEDLINE
| ID: mdl-31599152
Personal cooling technology using functional clothing that could provide localized thermal regulation instead of cooling the entire space is regarded as a highly anticipated strategy to not only facilitate thermal comfort and human health but also be energy-saving and low-cost. The challenge is how to endow textiles with prominent cooling effect whenever the wearer is motionless or sportive. In this study, high content of edge-selective hydroxylated boron nitride nanosheets (BNNSs) up to 60 wt % was added into a biodegradable cellulose/alkaline/urea aqueous solution, and then regenerated cellulose (RCF)/BNNS multifilaments were successfully spun in a simple, low-cost, and environmentally friendly process, which was demonstrated to serve as both static and dynamic personal cooling textile. Typically, excellent axial thermal conductivity of RCF/BNNS filament rendered that body-generated heat could directly escape from skin to the outside surface of the textile by means of thermal conduction, achieving a much better static personal cooling result through continuous thermal radiation. Besides, synergistic effect between excellent heat dissipation capability and good hygroscopicity also resulted in much better dynamic cooling effect once the wearer is doing some sports, whose efficiency was even better than commercial hygroscopic textiles such as cotton and RCF.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Textiles
/
Compuestos de Boro
/
Celulosa
Límite:
Humans
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2019
Tipo del documento:
Article