Ultrasound-Assisted miR-122-Loaded Polymeric Nanodroplets for Hepatocellular Carcinoma Gene Therapy.
Mol Pharm
; 17(2): 541-553, 2020 02 03.
Article
en En
| MEDLINE
| ID: mdl-31876426
Ultrasound-induced microbubble sonoporation has been shown to effectively improve drug/gene delivery efficiency by enhancing tissue and cell permeability. However, the microscale size and short duration of ultrasound contrast agents limit their accumulation in target areas. Here, a kind of ultrasound-triggered phase-transitioning and size-changing cationic nanodroplet, perfluoropentane/C9F17-PAsp(DET)/miR-122/poly(glutamic acid)-g-MeO-poly(ethylene glycol) (PGA-g-mPEG) ternary nanodroplets (PFP-TNDs/miR-122), was developed to deliver microRNA-122 (miR-122) for hepatocellular carcinoma (HCC) treatment. PFP served as an ultrasound-sensitive core for ultrasound-triggered phase transition and size change from the nanoscale to the microscale. Positively charged C9F17-PAsp(DET) ensured adequate miRNA loading. PGA-g-mPEG, which served as the shell of the nanodroplet, modified the nanodroplets, enhanced their stability in serum, and protected miR-122 from degradation in vivo. The results exhibited that PFP-TNDs/miR-122 has a nanosize diameter (362 ± 15 nm) and remained stable for 24 h. After treatment with PFP-TNDs/miR-122 combined with ultrasound irradiation, the miR-122 expression level was significantly increased by approximately 600-fold in HepG2 cells, 500-fold in SMMC-7721 cells, and 30-fold in human HCC xenografts. Moreover, PFP-TNDs/miR-122 combined with ultrasound radiation effectively suppressed the growth, migration, and invasion of HCC cells, and inhibited tumor proliferation in mice. This study revealed that the biodegradable PFP-TNDs is a promising therapeutic gene carrier with functions of gene protection and effective gene delivery for clinical applications. Furthermore, PFP-TNDs/miR-122 associated with ultrasound irradiation may pave a new way to improve the prognosis of patients with HCC.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Polietilenglicoles
/
Portadores de Fármacos
/
Terapia Genética
/
Carcinoma Hepatocelular
/
MicroARNs
/
Nanopartículas
/
Ondas Ultrasónicas
/
Neoplasias Hepáticas
Límite:
Animals
/
Female
/
Humans
Idioma:
En
Revista:
Mol Pharm
Asunto de la revista:
BIOLOGIA MOLECULAR
/
FARMACIA
/
FARMACOLOGIA
Año:
2020
Tipo del documento:
Article
País de afiliación:
China