Your browser doesn't support javascript.
loading
Controlling Excitons in an Atomically Thin Membrane with a Mirror.
Zhou, You; Scuri, Giovanni; Sung, Jiho; Gelly, Ryan J; Wild, Dominik S; De Greve, Kristiaan; Joe, Andrew Y; Taniguchi, Takashi; Watanabe, Kenji; Kim, Philip; Lukin, Mikhail D; Park, Hongkun.
Afiliación
  • Zhou Y; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Scuri G; Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Sung J; Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Gelly RJ; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Wild DS; Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
  • De Greve K; Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Joe AY; Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Taniguchi T; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Watanabe K; Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Kim P; Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Lukin MD; National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.
  • Park H; National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.
Phys Rev Lett ; 124(2): 027401, 2020 Jan 17.
Article en En | MEDLINE | ID: mdl-32004011
We demonstrate a new approach for dynamically manipulating the optical response of an atomically thin semiconductor, a monolayer of MoSe_{2}, by suspending it over a metallic mirror. First, we show that suspended van der Waals heterostructures incorporating a MoSe_{2} monolayer host spatially homogeneous, lifetime-broadened excitons. Then, we interface this nearly ideal excitonic system with a metallic mirror and demonstrate control over the exciton-photon coupling. Specifically, by electromechanically changing the distance between the heterostructure and the mirror, thereby changing the local photonic density of states in a controllable and reversible fashion, we show that both the absorption and emission properties of the excitons can be dynamically modulated. This electromechanical control over exciton dynamics in a mechanically flexible, atomically thin semiconductor opens up new avenues in cavity quantum optomechanics, nonlinear quantum optics, and topological photonics.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos