Your browser doesn't support javascript.
loading
Exploiting Pre-Existing CD4+ T Cell Help from Bacille Calmette-Guérin Vaccination to Improve Antiviral Antibody Responses.
Ng, Tony W; Wirchnianski, Ariel S; Wec, Anna Z; Fels, J Maximilian; Johndrow, Christopher T; Saunders, Kevin O; Liao, Hua-Xin; Chan, John; Jacobs, William R; Chandran, Kartik; Porcelli, Steven A.
Afiliación
  • Ng TW; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461.
  • Wirchnianski AS; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461.
  • Wec AZ; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461.
  • Fels JM; Adimab, Lebanon, NH 03766.
  • Johndrow CT; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461.
  • Saunders KO; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461.
  • Liao HX; Department of Medicine, Duke University School of Medicine, Durham, NC 27710; and.
  • Chan J; Department of Medicine, Duke University School of Medicine, Durham, NC 27710; and.
  • Jacobs WR; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461.
  • Chandran K; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461.
  • Porcelli SA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461.
J Immunol ; 205(2): 425-437, 2020 07 15.
Article en En | MEDLINE | ID: mdl-32513849
ABSTRACT
The continuing emergence of viral pathogens and their rapid spread into heavily populated areas around the world underscore the urgency for development of highly effective vaccines to generate protective antiviral Ab responses. Many established and newly emerging viral pathogens, including HIV and Ebola viruses, are most prevalent in regions of the world in which Mycobacterium tuberculosis infection remains endemic and vaccination at birth with M. bovis bacille Calmette-Guérin (BCG) is widely used. We have investigated the potential for using CD4+ T cells arising in response to BCG as a source of help for driving Ab responses against viral vaccines. To test this approach, we designed vaccines comprised of protein immunogens fused to an immunodominant CD4+ T cell epitope of the secreted Ag 85B protein of BCG. Proof-of-concept experiments showed that the presence of BCG-specific Th cells in previously BCG-vaccinated mice had a dose-sparing effect for subsequent vaccination with fusion proteins containing the Ag 85B epitope and consistently induced isotype switching to the IgG2c subclass. Studies using an Ebola virus glycoprotein fused to the Ag 85B epitope showed that prior BCG vaccination promoted high-affinity IgG1 responses that neutralized viral infection. The design of fusion protein vaccines with the ability to recruit BCG-specific CD4+ Th cells may be a useful and broadly applicable approach to generating improved vaccines against a range of established and newly emergent viral pathogens.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteínas Bacterianas / Aciltransferasas / Linfocitos T CD4-Positivos / Proteínas del Envoltorio Viral / Fiebre Hemorrágica Ebola / Vacunas contra el Virus del Ébola / Ebolavirus / Mycobacterium bovis / Antígenos Bacterianos Límite: Animals / Female / Humans Idioma: En Revista: J Immunol Año: 2020 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteínas Bacterianas / Aciltransferasas / Linfocitos T CD4-Positivos / Proteínas del Envoltorio Viral / Fiebre Hemorrágica Ebola / Vacunas contra el Virus del Ébola / Ebolavirus / Mycobacterium bovis / Antígenos Bacterianos Límite: Animals / Female / Humans Idioma: En Revista: J Immunol Año: 2020 Tipo del documento: Article