Your browser doesn't support javascript.
loading
The miRNA-mRNA interactome of murine induced pluripotent stem cell-derived chondrocytes in response to inflammatory cytokines.
Ross, Alison K; Coutinho de Almeida, Rodrigo; Ramos, Yolande F M; Li, Jiehan; Meulenbelt, Ingrid; Guilak, Farshid.
Afiliación
  • Ross AK; Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.
  • Coutinho de Almeida R; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
  • Ramos YFM; Shriners Hospitals for Children, St. Louis, MO, USA.
  • Li J; Center of Regenerative Medicine, Washington University, St. Louis, MO, USA.
  • Meulenbelt I; Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
  • Guilak F; Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
FASEB J ; 34(9): 11546-11561, 2020 09.
Article en En | MEDLINE | ID: mdl-32767602
Osteoarthritis (OA) is a degenerative joint disease, and inflammation within an arthritic joint plays a critical role in disease progression. Pro-inflammatory cytokines, specifically IL-1 and TNF-α, induce aberrant expression of catabolic and degradative enzymes and inflammatory cytokines in OA and result in a challenging environment for cartilage repair and regeneration. MicroRNAs (miRNAS) are small noncoding RNAs and are important regulatory molecules that act by binding to target messenger RNAs (mRNAs) to reduce protein synthesis and have been implicated in many diseases, including OA. The goal of this study was to understand the mechanisms of miRNA regulation of the transcriptome of tissue-engineered cartilage in response to IL-1ß and TNF-α using an in vitro murine induced pluripotent stem cell (miPSC) model system. We performed miRNA and mRNA sequencing to determine the temporal and dynamic responses of genes to specific inflammatory cytokines as well as miRNAs that are differentially expressed (DE) in response to both cytokines or exclusively to IL-1ß or TNF-α. Through integration of mRNA and miRNA sequencing data, we created networks of miRNA-mRNA interactions which may be controlling the response to inflammatory cytokines. Within the networks, hub miRNAs, miR-29b-3p, miR-17-5p, and miR-20a-5p, were identified. As validation of these findings, we found that delivery of miR-17-5p and miR-20a-5p mimics significantly decreased degradative enzyme activity levels while also decreasing expression of inflammation-related genes in cytokine-treated cells. This study utilized an integrative approach to determine the miRNA interactome controlling the response to inflammatory cytokines and novel mediators of inflammation-driven degradation in tissue-engineered cartilage.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: ARN Mensajero / Citocinas / Mediadores de Inflamación / Condrocitos / MicroARNs / Células Madre Pluripotentes Inducidas Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: FASEB J Asunto de la revista: BIOLOGIA / FISIOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: ARN Mensajero / Citocinas / Mediadores de Inflamación / Condrocitos / MicroARNs / Células Madre Pluripotentes Inducidas Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: FASEB J Asunto de la revista: BIOLOGIA / FISIOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos