Study on the relationship between PM2.5 concentration and intensive land use in Hebei Province based on a spatial regression model.
PLoS One
; 15(9): e0238547, 2020.
Article
en En
| MEDLINE
| ID: mdl-32946497
Based on 0.01°×0.01° grid data of PM2.5 annual concentration and statistical yearbook data for 11 cities in Hebei Province from 2000 to 2015, the temporal and spatial distribution characteristics of PM2.5 in the study area are analysed, the level of intensive land use in the area is evaluated, and decoupling theory and spatial regression are used to discuss the relationship between PM2.5 concentration and intensive land use and the influence of intensive land use variables on PM2.5 in Hebei Province. The results show that 1. In terms of time, the concentration of PM2.5 in Hebei Province showed an overall upward trend from 2000 to 2015, with the highest in winter and the lowest in summer. The daily variations show double peaks at 8:00-10:00 and 21:00-0:00 and a single valley at 16:00-18:00. 2. In terms of space, the concentration of PM2.5 in Hebei Province is high in the southeast and low in the northwest, and the pollution spillover initially decreases and then increases. 3. In the past 16 years, the level of intensive land use in Hebei Province has increased annually, but blind expansion still exists. 4. Decoupling theory and the spatial lag model show that land use intensity, land input level and land use structure are positively correlated with PM2.5 concentration, land output benefit is negatively correlated with PM2.5 concentration, and PM2.5 concentration and land intensive use level have not yet been decoupled; thus, the relationship is not harmonious. This research can provide a scientific basis for reducing air pollution and promoting the development of urban land resources for intensive and sustainable development.
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Recursos Naturales
/
Contaminantes Atmosféricos
/
Contaminación del Aire
/
Material Particulado
Tipo de estudio:
Clinical_trials
/
Prognostic_studies
País/Región como asunto:
Asia
Idioma:
En
Revista:
PLoS One
Asunto de la revista:
CIENCIA
/
MEDICINA
Año:
2020
Tipo del documento:
Article
País de afiliación:
China