Your browser doesn't support javascript.
loading
Stoichiometric interactions explain spindle dynamics and scaling across 100 million years of nematode evolution.
Farhadifar, Reza; Yu, Che-Hang; Fabig, Gunar; Wu, Hai-Yin; Stein, David B; Rockman, Matthew; Müller-Reichert, Thomas; Shelley, Michael J; Needleman, Daniel J.
Afiliación
  • Farhadifar R; Department of Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, United States.
  • Yu CH; Center for Computational Biology, Flatiron Institute, New York, United States.
  • Fabig G; Department of Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, United States.
  • Wu HY; Experimental Center, Faculty of Medicine Carl Gustav Carus, Dresden, Germany.
  • Stein DB; Department of Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, United States.
  • Rockman M; Center for Computational Biology, Flatiron Institute, New York, United States.
  • Müller-Reichert T; Department of Biology and Center for Genomics & Systems Biology, New York University, New York, United States.
  • Shelley MJ; Experimental Center, Faculty of Medicine Carl Gustav Carus, Dresden, Germany.
  • Needleman DJ; Center for Computational Biology, Flatiron Institute, New York, United States.
Elife ; 92020 09 23.
Article en En | MEDLINE | ID: mdl-32966209
ABSTRACT
The spindle shows remarkable diversity, and changes in an integrated fashion, as cells vary over evolution. Here, we provide a mechanistic explanation for variations in the first mitotic spindle in nematodes. We used a combination of quantitative genetics and biophysics to rule out broad classes of models of the regulation of spindle length and dynamics, and to establish the importance of a balance of cortical pulling forces acting in different directions. These experiments led us to construct a model of cortical pulling forces in which the stoichiometric interactions of microtubules and force generators (each force generator can bind only one microtubule), is key to explaining the dynamics of spindle positioning and elongation, and spindle final length and scaling with cell size. This model accounts for variations in all the spindle traits we studied here, both within species and across nematode species spanning over 100 million years of evolution.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Caenorhabditis elegans / Tamaño de la Célula / Microtúbulos / Huso Acromático Límite: Animals Idioma: En Revista: Elife Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Caenorhabditis elegans / Tamaño de la Célula / Microtúbulos / Huso Acromático Límite: Animals Idioma: En Revista: Elife Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos