Your browser doesn't support javascript.
loading
High-resolution visualization and quantification of nucleic acid-based therapeutics in cells and tissues using Nanoscale secondary ion mass spectrometry (NanoSIMS).
He, Cuiwen; Migawa, Michael T; Chen, Kai; Weston, Thomas A; Tanowitz, Michael; Song, Wenxin; Guagliardo, Paul; Iyer, K Swaminathan; Bennett, C Frank; Fong, Loren G; Seth, Punit P; Young, Stephen G; Jiang, Haibo.
Afiliación
  • He C; Department of Medicine, University of California, Los Angeles, CA 90095, USA.
  • Migawa MT; Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA.
  • Chen K; School of Molecular Sciences, University of Western Australia, Perth 6009, Australia.
  • Weston TA; Department of Medicine, University of California, Los Angeles, CA 90095, USA.
  • Tanowitz M; Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA.
  • Song W; Department of Medicine, University of California, Los Angeles, CA 90095, USA.
  • Guagliardo P; Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth 6009, Australia.
  • Iyer KS; School of Molecular Sciences, University of Western Australia, Perth 6009, Australia.
  • Bennett CF; Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA.
  • Fong LG; Department of Medicine, University of California, Los Angeles, CA 90095, USA.
  • Seth PP; Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA.
  • Young SG; Department of Medicine, University of California, Los Angeles, CA 90095, USA.
  • Jiang H; Department of Human Genetics, University of California, Los Angeles, CA 90095, USA.
Nucleic Acids Res ; 49(1): 1-14, 2021 01 11.
Article en En | MEDLINE | ID: mdl-33275144
ABSTRACT
Nucleic acid therapeutics (NATs) have proven useful in promoting the degradation of specific transcripts, modifying gene expression, and regulating mRNA splicing. In each situation, efficient delivery of nucleic acids to cells, tissues and intracellular compartments is crucial-both for optimizing efficacy and reducing side effects. Despite successes in NATs, our understanding of their cellular uptake and distribution in tissues is limited. Current methods have yielded insights into distribution of NATs within cells and tissues, but the sensitivity and resolution of these approaches are limited. Here, we show that nanoscale secondary ion mass spectrometry (NanoSIMS) imaging can be used to define the distribution of 5-bromo-2'-deoxythymidine (5-BrdT) modified antisense oligonucleotides (ASO) in cells and tissues with high sensitivity and spatial resolution. This approach makes it possible to define ASO uptake and distribution in different subcellular compartments and to quantify the impact of targeting ligands designed to promote ASO uptake by cells. Our studies showed that phosphorothioate ASOs are associated with filopodia and the inner nuclear membrane in cultured cells, and also revealed substantial cellular and subcellular heterogeneity of ASO uptake in mouse tissues. NanoSIMS imaging represents a significant advance in visualizing uptake and distribution of NATs; this approach will be useful in optimizing efficacy and delivery of NATs for treating human disease.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Oligonucleótidos Antisentido / Espectrometría de Masa de Ion Secundario / Oligonucleótidos Fosforotioatos Límite: Animals / Humans / Male Idioma: En Revista: Nucleic Acids Res Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Oligonucleótidos Antisentido / Espectrometría de Masa de Ion Secundario / Oligonucleótidos Fosforotioatos Límite: Animals / Humans / Male Idioma: En Revista: Nucleic Acids Res Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos