Your browser doesn't support javascript.
loading
Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency.
Caldwell, Blake A; Liu, Monica Yun; Prasasya, Rexxi D; Wang, Tong; DeNizio, Jamie E; Leu, N Adrian; Amoh, Nana Yaa A; Krapp, Christopher; Lan, Yemin; Shields, Emily J; Bonasio, Roberto; Lengner, Christopher J; Kohli, Rahul M; Bartolomei, Marisa S.
Afiliación
  • Caldwell BA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Liu MY; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Prasasya RD; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Wang T; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • DeNizio JE; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Leu NA; Department of Biomedical Sciences, School of Veterinary Medicine, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Amoh NYA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Krapp C; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Lan Y; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Shields EJ; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Bonasio R; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Lengner CJ; Department of Biomedical Sciences, School of Veterinary Medicine, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Kohli RM; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address: rkohli@pennmedicine.upenn.edu.
  • Bartolomei MS; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address: bartolom@pennmedicine.upenn.edu.
Mol Cell ; 81(4): 859-869.e8, 2021 02 18.
Article en En | MEDLINE | ID: mdl-33352108
ABSTRACT
Active DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-carboxycytosine (5caC). Although these bases are known to contribute to distinct demethylation pathways, the lack of tools to uncouple these sequential oxidative events has constrained our mechanistic understanding of the role of TETs in chromatin reprogramming. Here, we describe the first application of biochemically engineered TET mutants that unlink 5mC oxidation steps, examining their effects on somatic cell reprogramming. We show that only TET enzymes proficient for oxidation to 5fC/5caC can rescue the reprogramming potential of Tet2-deficient mouse embryonic fibroblasts. This effect correlated with rapid DNA demethylation at reprogramming enhancers and increased chromatin accessibility later in reprogramming. These experiments demonstrate that DNA demethylation through 5fC/5caC has roles distinct from 5hmC in somatic reprogramming to pluripotency.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteínas Proto-Oncogénicas / Elementos de Facilitación Genéticos / 5-Metilcitosina / Epigénesis Genética / Proteínas de Unión al ADN / Embrión de Mamíferos / Reprogramación Celular / Fibroblastos Límite: Animals / Humans Idioma: En Revista: Mol Cell Asunto de la revista: BIOLOGIA MOLECULAR Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteínas Proto-Oncogénicas / Elementos de Facilitación Genéticos / 5-Metilcitosina / Epigénesis Genética / Proteínas de Unión al ADN / Embrión de Mamíferos / Reprogramación Celular / Fibroblastos Límite: Animals / Humans Idioma: En Revista: Mol Cell Asunto de la revista: BIOLOGIA MOLECULAR Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos