Your browser doesn't support javascript.
loading
Classical Rayleigh-Jeans Condensation of Light Waves: Observation and Thermodynamic Characterization.
Baudin, K; Fusaro, A; Krupa, K; Garnier, J; Rica, S; Millot, G; Picozzi, A.
Afiliación
  • Baudin K; Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS, Université Bourgogne Franche-Comté, 21078 Dijon, France.
  • Fusaro A; Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS, Université Bourgogne Franche-Comté, 21078 Dijon, France.
  • Krupa K; CEA, DAM, DIF, F-91297 Arpajon Cedex, France.
  • Garnier J; Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS, Université Bourgogne Franche-Comté, 21078 Dijon, France.
  • Rica S; Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
  • Millot G; CMAP, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France.
  • Picozzi A; Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda. Diagonal las Torres 2640, Peñalolén, 7910000, Santiago, Chile.
Phys Rev Lett ; 125(24): 244101, 2020 Dec 11.
Article en En | MEDLINE | ID: mdl-33412051
ABSTRACT
Theoretical studies on wave turbulence predict that a purely classical system of random waves can exhibit a process of condensation, which originates in the singularity of the Rayleigh-Jeans equilibrium distribution. We report the experimental observation of the transition to condensation of classical optical waves propagating in a multimode fiber, i.e., in a conservative Hamiltonian system without thermal heat bath. In contrast to conventional self-organization processes featured by the nonequilibrium formation of nonlinear coherent structures (solitons, vortices,…), here the self-organization originates in the equilibrium Rayleigh-Jeans statistics of classical waves. The experimental results show that the chemical potential reaches the lowest energy level at the transition to condensation, which leads to the macroscopic population of the fundamental mode of the optical fiber. The near-field and far-field measurements of the condensate fraction across the transition to condensation are in quantitative agreement with the Rayleigh-Jeans theory. The thermodynamics of classical wave condensation reveals that the heat capacity takes a constant value in the condensed state and tends to vanish above the transition in the normal state. Our experiments provide the first demonstration of a coherent phenomenon of self-organization that is exclusively driven by optical thermalization toward the Rayleigh-Jeans equilibrium.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2020 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2020 Tipo del documento: Article País de afiliación: Francia