Your browser doesn't support javascript.
loading
OCT-OCTA segmentation: combining structural and blood flow information to segment Bruch's membrane.
Schottenhamml, Julia; Moult, Eric M; Ploner, Stefan B; Chen, Siyu; Novais, Eduardo; Husvogt, Lennart; Duker, Jay S; Waheed, Nadia K; Fujimoto, James G; Maier, Andreas K.
Afiliación
  • Schottenhamml J; Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany.
  • Moult EM; Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Ploner SB; Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany.
  • Chen S; Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Novais E; New England Eye Center, Tufts Medical Center, Boston, MA 02116, USA.
  • Husvogt L; Federal University of São Paulo, School of Medicine, São Paulo - SP, 04021-001, Brazil.
  • Duker JS; Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany.
  • Waheed NK; Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Fujimoto JG; New England Eye Center, Tufts Medical Center, Boston, MA 02116, USA.
  • Maier AK; New England Eye Center, Tufts Medical Center, Boston, MA 02116, USA.
Biomed Opt Express ; 12(1): 84-99, 2021 Jan 01.
Article en En | MEDLINE | ID: mdl-33520378
In this paper we present a fully automated graph-based segmentation algorithm that jointly uses optical coherence tomography (OCT) and OCT angiography (OCTA) data to segment Bruch's membrane (BM). This is especially valuable in cases where the spatial correlation between BM, which is usually not visible on OCT scans, and the retinal pigment epithelium (RPE), which is often used as a surrogate for segmenting BM, is distorted by pathology. We validated the performance of our proposed algorithm against manual segmentation in a total of 18 eyes from healthy controls and patients with diabetic retinopathy (DR), non-exudative age-related macular degeneration (AMD) (early/intermediate AMD, nascent geographic atrophy (nGA) and drusen-associated geographic atrophy (DAGA) and geographic atrophy (GA)), and choroidal neovascularization (CNV) with a mean absolute error of ∼0.91 pixel (∼4.1 µm). This paper suggests that OCT-OCTA segmentation may be a useful framework to complement the growing usage of OCTA in ophthalmic research and clinical communities.

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Guideline Idioma: En Revista: Biomed Opt Express Año: 2021 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Guideline Idioma: En Revista: Biomed Opt Express Año: 2021 Tipo del documento: Article País de afiliación: Alemania