Your browser doesn't support javascript.
loading
Single-particle tracking photoactivated localization microscopy of membrane proteins in living plant tissues.
Bayle, Vincent; Fiche, Jean-Bernard; Burny, Claire; Platre, Matthieu Pierre; Nollmann, Marcelo; Martinière, Alexandre; Jaillais, Yvon.
Afiliación
  • Bayle V; Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France.
  • Fiche JB; Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Institut National de la Santé et de la Recherche Médicale U1054, Université de Montpellier, Montpellier, France.
  • Burny C; Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria.
  • Platre MP; Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria.
  • Nollmann M; Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France.
  • Martinière A; Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Institut National de la Santé et de la Recherche Médicale U1054, Université de Montpellier, Montpellier, France.
  • Jaillais Y; BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France. alexandre.martiniere@cnrs.fr.
Nat Protoc ; 16(3): 1600-1628, 2021 03.
Article en En | MEDLINE | ID: mdl-33627844
ABSTRACT
Super-resolution microscopy techniques have pushed the limit of optical imaging to unprecedented spatial resolutions. However, one of the frontiers in nanoscopy is its application to intact living organisms. Here we describe the implementation and application of super-resolution single-particle tracking photoactivated localization microscopy (sptPALM) to probe single-molecule dynamics of membrane proteins in live roots of the model plant Arabidopsis thaliana. We first discuss the advantages and limitations of sptPALM for studying the diffusion properties of membrane proteins and compare this to fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS). We describe the technical details for handling and imaging the samples for sptPALM, with a particular emphasis on the specificity of imaging plant cells, such as their thick cell walls or high degree of autofluorescence. We then provide a practical guide from data collection to image analyses. In particular, we introduce our sptPALM_viewer software and describe how to install and use it for analyzing sptPALM experiments. Finally, we report an R statistical analysis pipeline to analyze and compare sptPALM experiments. Altogether, this protocol should enable plant researchers to perform sptPALM using a benchmarked reproducible protocol. Routinely, the procedure takes 3-4 h of imaging followed by 3-4 d of image processing and data analysis.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Imagen Individual de Molécula / Proteínas de la Membrana / Microscopía Fluorescente Tipo de estudio: Guideline Idioma: En Revista: Nat Protoc Año: 2021 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Imagen Individual de Molécula / Proteínas de la Membrana / Microscopía Fluorescente Tipo de estudio: Guideline Idioma: En Revista: Nat Protoc Año: 2021 Tipo del documento: Article País de afiliación: Francia