Your browser doesn't support javascript.
loading
Dataset Construction to Explore Chemical Space with 3D Geometry and Deep Learning.
Lu, Jianing; Xia, Song; Lu, Jieyu; Zhang, Yingkai.
Afiliación
  • Lu J; Department of Chemistry, New York University, New York, New York 10003, United States.
  • Xia S; Department of Chemistry, New York University, New York, New York 10003, United States.
  • Lu J; Department of Chemistry, New York University, New York, New York 10003, United States.
  • Zhang Y; Department of Chemistry, New York University, New York, New York 10003, United States.
J Chem Inf Model ; 61(3): 1095-1104, 2021 03 22.
Article en En | MEDLINE | ID: mdl-33683885
A dataset is the basis of deep learning model development, and the success of deep learning models heavily relies on the quality and size of the dataset. In this work, we present a new data preparation protocol and build a large fragment-based dataset Frag20, which consists of optimized 3D geometries and calculated molecular properties from Merck molecular force field (MMFF) and DFT at the B3LYP/6-31G* level of theory for more than half a million molecules composed of H, B, C, O, N, F, P, S, Cl, and Br with no larger than 20 heavy atoms. Based on the new dataset, we develop robust molecular energy prediction models using a simplified PhysNet architecture for both DFT-optimized and MMFF-optimized geometries, which achieve better than or close to chemical accuracy (1 kcal/mol) on multiple test sets, including CSD20 and Plati20 based on experimental crystal structures.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Aprendizaje Profundo Tipo de estudio: Prognostic_studies Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Aprendizaje Profundo Tipo de estudio: Prognostic_studies Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos