Your browser doesn't support javascript.
loading
Deep Learning Model for Identifying Critical Structural Motifs in Potential Endocrine Disruptors.
Mukherjee, Arpan; Su, An; Rajan, Krishna.
Afiliación
  • Mukherjee A; Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States.
  • Su A; Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States.
  • Rajan K; Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States.
J Chem Inf Model ; 61(5): 2187-2197, 2021 05 24.
Article en En | MEDLINE | ID: mdl-33872000
This paper aims to identify structural motifs within a molecule that contribute the most toward a chemical being an endocrine disruptor. We have developed a deep neural network-based toolkit toward this aim. The trained model can virtually assess a synthetic chemical's potential to be an endocrine disruptor using machine-readable molecular representation, simplified molecular input line entry system (SMILES). Our proposed toolkit is a multilabel or multioutput classification model that combines both convolution and long short-term memory (LSTM) architectures. The toolkit leverages the advantages of an active learning-based framework that combines multiple sources of data. Class activation maps (CAMs) generated from the feature-extraction layers can identify the structural alerts and the chemical environment that determines the specificity of the structural alerts.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Disruptores Endocrinos / Aprendizaje Profundo Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Disruptores Endocrinos / Aprendizaje Profundo Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos