Deep Learning Model for Identifying Critical Structural Motifs in Potential Endocrine Disruptors.
J Chem Inf Model
; 61(5): 2187-2197, 2021 05 24.
Article
en En
| MEDLINE
| ID: mdl-33872000
This paper aims to identify structural motifs within a molecule that contribute the most toward a chemical being an endocrine disruptor. We have developed a deep neural network-based toolkit toward this aim. The trained model can virtually assess a synthetic chemical's potential to be an endocrine disruptor using machine-readable molecular representation, simplified molecular input line entry system (SMILES). Our proposed toolkit is a multilabel or multioutput classification model that combines both convolution and long short-term memory (LSTM) architectures. The toolkit leverages the advantages of an active learning-based framework that combines multiple sources of data. Class activation maps (CAMs) generated from the feature-extraction layers can identify the structural alerts and the chemical environment that determines the specificity of the structural alerts.
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Disruptores Endocrinos
/
Aprendizaje Profundo
Idioma:
En
Revista:
J Chem Inf Model
Asunto de la revista:
INFORMATICA MEDICA
/
QUIMICA
Año:
2021
Tipo del documento:
Article
País de afiliación:
Estados Unidos