The PP2A-Integrator-CDK9 axis fine-tunes transcription and can be targeted therapeutically in cancer.
Cell
; 184(12): 3143-3162.e32, 2021 06 10.
Article
en En
| MEDLINE
| ID: mdl-34004147
Gene expression by RNA polymerase II (RNAPII) is tightly controlled by cyclin-dependent kinases (CDKs) at discrete checkpoints during the transcription cycle. The pausing checkpoint following transcription initiation is primarily controlled by CDK9. We discovered that CDK9-mediated, RNAPII-driven transcription is functionally opposed by a protein phosphatase 2A (PP2A) complex that is recruited to transcription sites by the Integrator complex subunit INTS6. PP2A dynamically antagonizes phosphorylation of key CDK9 substrates including DSIF and RNAPII-CTD. Loss of INTS6 results in resistance to tumor cell death mediated by CDK9 inhibition, decreased turnover of CDK9 phospho-substrates, and amplification of acute oncogenic transcriptional responses. Pharmacological PP2A activation synergizes with CDK9 inhibition to kill both leukemic and solid tumor cells, providing therapeutic benefit in vivo. These data demonstrate that fine control of gene expression relies on the balance between kinase and phosphatase activity throughout the transcription cycle, a process dysregulated in cancer that can be exploited therapeutically.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Transcripción Genética
/
Proteínas de Unión al ARN
/
Proteínas Supresoras de Tumor
/
Quinasa 9 Dependiente de la Ciclina
/
Proteína Fosfatasa 2
/
Terapia Molecular Dirigida
/
Neoplasias
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Cell
Año:
2021
Tipo del documento:
Article