Your browser doesn't support javascript.
loading
NGSremix: a software tool for estimating pairwise relatedness between admixed individuals from next-generation sequencing data.
Nøhr, Anne Krogh; Hanghøj, Kristian; Garcia-Erill, Genís; Li, Zilong; Moltke, Ida; Albrechtsen, Anders.
Afiliación
  • Nøhr AK; Department of Biology, The Bioinformatics Centre, University of Copenhagen, 2200 Copenhagen N, Denmark.
  • Hanghøj K; H. Lundbeck A/S, 2500 Valby, Denmark.
  • Garcia-Erill G; Department of Biology, The Bioinformatics Centre, University of Copenhagen, 2200 Copenhagen N, Denmark.
  • Li Z; Department of Biology, The Bioinformatics Centre, University of Copenhagen, 2200 Copenhagen N, Denmark.
  • Moltke I; Department of Biology, The Bioinformatics Centre, University of Copenhagen, 2200 Copenhagen N, Denmark.
  • Albrechtsen A; Department of Biology, The Bioinformatics Centre, University of Copenhagen, 2200 Copenhagen N, Denmark.
G3 (Bethesda) ; 11(8)2021 08 07.
Article en En | MEDLINE | ID: mdl-34015083
Estimation of relatedness between pairs of individuals is important in many genetic research areas. When estimating relatedness, it is important to account for admixture if this is present. However, the methods that can account for admixture are all based on genotype data as input, which is a problem for low-depth next-generation sequencing (NGS) data from which genotypes are called with high uncertainty. Here, we present a software tool, NGSremix, for maximum likelihood estimation of relatedness between pairs of admixed individuals from low-depth NGS data, which takes the uncertainty of the genotypes into account via genotype likelihoods. Using both simulated and real NGS data for admixed individuals with an average depth of 4x or below we show that our method works well and clearly outperforms all the commonly used state-of-the-art relatedness estimation methods PLINK, KING, relateAdmix, and ngsRelate that all perform quite poorly. Hence, NGSremix is a useful new tool for estimating relatedness in admixed populations from low-depth NGS data. NGSremix is implemented in C/C++ in a multi-threaded software and is freely available on Github https://github.com/KHanghoj/NGSremix.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Secuenciación de Nucleótidos de Alto Rendimiento / Genética de Población Límite: Humans Idioma: En Revista: G3 (Bethesda) Año: 2021 Tipo del documento: Article País de afiliación: Dinamarca

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Secuenciación de Nucleótidos de Alto Rendimiento / Genética de Población Límite: Humans Idioma: En Revista: G3 (Bethesda) Año: 2021 Tipo del documento: Article País de afiliación: Dinamarca