Your browser doesn't support javascript.
loading
Longitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression.
De Brouwer, Edward; Becker, Thijs; Moreau, Yves; Havrdova, Eva Kubala; Trojano, Maria; Eichau, Sara; Ozakbas, Serkan; Onofrj, Marco; Grammond, Pierre; Kuhle, Jens; Kappos, Ludwig; Sola, Patrizia; Cartechini, Elisabetta; Lechner-Scott, Jeannette; Alroughani, Raed; Gerlach, Oliver; Kalincik, Tomas; Granella, Franco; Grand'Maison, Francois; Bergamaschi, Roberto; José Sá, Maria; Van Wijmeersch, Bart; Soysal, Aysun; Sanchez-Menoyo, Jose Luis; Solaro, Claudio; Boz, Cavit; Iuliano, Gerardo; Buzzard, Katherine; Aguera-Morales, Eduardo; Terzi, Murat; Trivio, Tamara Castillo; Spitaleri, Daniele; Van Pesch, Vincent; Shaygannejad, Vahid; Moore, Fraser; Oreja-Guevara, Celia; Maimone, Davide; Gouider, Riadh; Csepany, Tunde; Ramo-Tello, Cristina; Peeters, Liesbet.
Afiliación
  • De Brouwer E; ESAT-STADIUS, KU Leuven, Leuven 3001, Belgium. Electronic address: edward.debrouwer@esat.kuleuven.be.
  • Becker T; I-Biostat, Data Science Institute, Hasselt University, Diepenbeek, Belgium. Electronic address: thijs.becker@uhasselt.be.
  • Moreau Y; ESAT-STADIUS, KU Leuven, Leuven 3001, Belgium. Electronic address: moreau@esat.kuleuven.be.
  • Havrdova EK; Charles University in Prague General University Hospital, Prague, Czech.
  • Trojano M; Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Bari, Italy.
  • Eichau S; Hospital Universitario Virgen Macarena, Sevilla, Spain.
  • Ozakbas S; Dokuz Eylul University, Konak/Izmir, Turkey.
  • Onofrj M; University G. d'Annunzio, Chieti, Italy.
  • Grammond P; CISSS Chaudire-Appalache, Levis, Canada.
  • Kuhle J; Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland.
  • Kappos L; Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland.
  • Sola P; Azienda Ospedaliera Universitaria, Modena, Italy.
  • Cartechini E; Azienda Sanitaria Unica Regionale Marche - AV3, Macerata, Italy.
  • Lechner-Scott J; University Newcastle, Newcastle, Australia.
  • Alroughani R; Amiri Hospital, Sharq, Kuwait.
  • Gerlach O; Zuyderland Ziekenhuis, Sittard, the Netherlands.
  • Kalincik T; Melbourne MS Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Australia; CORe, Department of Medicine, University of Melbourne, Melbourne, Australia.
  • Granella F; University of Parma, Parma, Italy.
  • Grand'Maison F; Neuro Rive-Sud, Quebec, Canada.
  • Bergamaschi R; IRCCS Mondino Foundation, Pavia, Italy.
  • José Sá M; Department of Neurology, Centro Hospitalar Universitario de So Joo and University Fernando Pessoa, Porto, Portugal.
  • Van Wijmeersch B; Rehabilitation and MS-Centre Overpelt Hasselt University, Hasselt, Belgium.
  • Soysal A; Bakirkoy Education and Research Hospital for Psychiatric and Neurological Diseases, Istanbul, Turkey.
  • Sanchez-Menoyo JL; Hospital de Galdakao-Usansolo, Galdakao, Spain.
  • Solaro C; Dept of Rehabilitation mons L Novarese Hospital, Moncrivello, Italy.
  • Boz C; KTU Medical Faculty Farabi Hospital, Trabzon, Turkey.
  • Iuliano G; previously at Ospedali Riuniti di Salerno, Salerno, Italy.
  • Buzzard K; Box Hill Hospital, Melbourne, Australia.
  • Aguera-Morales E; University Hospital Reina Sofia, Cordoba, Spain.
  • Terzi M; 19 Mayis University, Samsun, Turkey.
  • Trivio TC; Hospital Universitario Donostia, San Sebastain, Spain.
  • Spitaleri D; Azienda Ospedaliera di Rilievo Nazionale San Giuseppe Moscati Avellino, Avellino, Italy.
  • Van Pesch V; Cliniques Universitaires Saint-Luc, Brussels, Belgium.
  • Shaygannejad V; Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
  • Moore F; Jewish General Hospital, Montreal, Canada.
  • Oreja-Guevara C; Hospital Clinico San Carlos, Madrid, Spain.
  • Maimone D; Garibaldi Hospital, Catania, Italy.
  • Gouider R; Razi Hospital, Manouba, Tunisia.
  • Csepany T; University of Debrecen, Debrecen, Hungary.
  • Ramo-Tello C; Hospital Germans Trias i Pujol, Badalona, Spain.
  • Peeters L; I-Biostat, Data Science Institute, Hasselt University, Diepenbeek, Belgium; Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek 3590, Belgium; Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek 3590, Belgium; I-Biostat, Data Sc
Comput Methods Programs Biomed ; 208: 106180, 2021 Sep.
Article en En | MEDLINE | ID: mdl-34146771
BACKGROUND AND OBJECTIVES: Research in Multiple Sclerosis (MS) has recently focused on extracting knowledge from real-world clinical data sources. This type of data is more abundant than data produced during clinical trials and potentially more informative about real-world clinical practice. However, this comes at the cost of less curated and controlled data sets. In this work we aim to predict disability progression by optimally extracting information from longitudinal patient data in the real-world setting, with a special focus on the sporadic sampling problem. METHODS: We use machine learning methods suited for patient trajectories modeling, such as recurrent neural networks and tensor factorization. A subset of 6682 patients from the MSBase registry is used. RESULTS: We can predict disability progression of patients in a two-year horizon with an ROC-AUC of 0.85, which represents a 32% decrease in the ranking pair error (1-AUC) compared to reference methods using static clinical features. CONCLUSIONS: Compared to the models available in the literature, this work uses the most complete patient history for MS disease progression prediction and represents a step forward towards AI-assisted precision medicine in MS.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Aprendizaje Automático / Esclerosis Múltiple Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Comput Methods Programs Biomed Asunto de la revista: INFORMATICA MEDICA Año: 2021 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Aprendizaje Automático / Esclerosis Múltiple Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Comput Methods Programs Biomed Asunto de la revista: INFORMATICA MEDICA Año: 2021 Tipo del documento: Article