Your browser doesn't support javascript.
loading
Transposable elements and their KZFP controllers are drivers of transcriptional innovation in the developing human brain.
Playfoot, Christopher J; Duc, Julien; Sheppard, Shaoline; Dind, Sagane; Coudray, Alexandre; Planet, Evarist; Trono, Didier.
Afiliación
  • Playfoot CJ; School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
  • Duc J; School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
  • Sheppard S; School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
  • Dind S; School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
  • Coudray A; School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
  • Planet E; School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
  • Trono D; School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Genome Res ; 31(9): 1531-1545, 2021 09.
Article en En | MEDLINE | ID: mdl-34400477
ABSTRACT
Transposable elements (TEs) account for more than 50% of the human genome and many have been co-opted throughout evolution to provide regulatory functions for gene expression networks. Several lines of evidence suggest that these networks are fine-tuned by the largest family of TE controllers, the KRAB-containing zinc finger proteins (KZFPs). One tissue permissive for TE transcriptional activation (termed "transposcription") is the adult human brain, however comprehensive studies on the extent of this process and its potential contribution to human brain development are lacking. To elucidate the spatiotemporal transposcriptome of the developing human brain, we have analyzed two independent RNA-seq data sets encompassing 16 brain regions from eight weeks postconception into adulthood. We reveal a distinct KZFPTE transcriptional profile defining the late prenatal to early postnatal transition, and the spatiotemporal and cell type-specific activation of TE-derived alternative promoters driving the expression of neurogenesis-associated genes. Long-read sequencing confirmed these TE-driven isoforms as significant contributors to neurogenic transcripts. We also show experimentally that a co-opted antisense L2 element drives temporal protein relocalization away from the endoplasmic reticulum, suggestive of novel TE dependent protein function in primate evolution. This work highlights the widespread dynamic nature of the spatiotemporal KZFPTE transcriptome and its importance throughout TE mediated genome innovation and neurotypical human brain development. To facilitate interactive exploration of these spatiotemporal gene and TE expression dynamics, we provide the "Brain TExplorer" web application freely accessible for the community.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Primates / Elementos Transponibles de ADN Límite: Adult / Animals / Female / Humans / Pregnancy Idioma: En Revista: Genome Res Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2021 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Primates / Elementos Transponibles de ADN Límite: Adult / Animals / Female / Humans / Pregnancy Idioma: En Revista: Genome Res Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2021 Tipo del documento: Article País de afiliación: Suiza