Your browser doesn't support javascript.
loading
Creating Quantum Emitters in Hexagonal Boron Nitride Deterministically on Chip-Compatible Substrates.
Xu, Xiaohui; Martin, Zachariah O; Sychev, Demid; Lagutchev, Alexei S; Chen, Yong P; Taniguchi, Takashi; Watanabe, Kenji; Shalaev, Vladimir M; Boltasseva, Alexandra.
Afiliación
  • Xu X; School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States.
  • Martin ZO; School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States.
  • Sychev D; School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States.
  • Lagutchev AS; School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States.
  • Chen YP; School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States.
  • Taniguchi T; Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47906, United States.
  • Watanabe K; Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark.
  • Shalaev VM; National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan.
  • Boltasseva A; National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan.
Nano Lett ; 21(19): 8182-8189, 2021 10 13.
Article en En | MEDLINE | ID: mdl-34606291
ABSTRACT
Two-dimensional hexagonal boron nitride (hBN) that hosts room-temperature single-photon emitters (SPEs) is promising for quantum information applications. An important step toward the practical application of hBN is the on-demand, position-controlled generation of SPEs. Strategies reported for deterministic creation of hBN SPEs either rely on substrate nanopatterning that is not compatible with integrated photonics or utilize radiation sources that might introduce unpredictable damage or contamination to hBN. Here, we report a radiation- and lithography-free route to deterministically activate hBN SPEs by nanoindentation with atomic force microscopy (AFM). The method applies to hBN flakes on flat silicon dioxide-silicon substrates that can be readily integrated into on-chip photonic devices. The achieved SPE yields are above 30% for multiple indent sizes, and a maximum yield of 36% is demonstrated for indents around 400 nm. Our results mark an important step toward the deterministic creation and integration of hBN SPEs with photonic and plasmonic devices.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Compuestos de Boro / Dióxido de Silicio Idioma: En Revista: Nano Lett Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Compuestos de Boro / Dióxido de Silicio Idioma: En Revista: Nano Lett Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos