Your browser doesn't support javascript.
loading
Machine Learning Assisted Classification of Cell Lines and Cell States on Quantitative Phase Images.
Belashov, Andrey V; Zhikhoreva, Anna A; Belyaeva, Tatiana N; Salova, Anna V; Kornilova, Elena S; Semenova, Irina V; Vasyutinskii, Oleg S.
Afiliación
  • Belashov AV; Ioffe Institute, 26, Polytekhnicheskaya, 194021 St. Petersburg, Russia.
  • Zhikhoreva AA; Ioffe Institute, 26, Polytekhnicheskaya, 194021 St. Petersburg, Russia.
  • Belyaeva TN; Institute of Cytology of RAS, 4, Tikhoretsky pr., 194064 St. Petersburg, Russia.
  • Salova AV; Institute of Cytology of RAS, 4, Tikhoretsky pr., 194064 St. Petersburg, Russia.
  • Kornilova ES; Institute of Cytology of RAS, 4, Tikhoretsky pr., 194064 St. Petersburg, Russia.
  • Semenova IV; Institute for Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 29, Polytekhnicheskaya, 195251 St. Petersburg, Russia.
  • Vasyutinskii OS; Ioffe Institute, 26, Polytekhnicheskaya, 194021 St. Petersburg, Russia.
Cells ; 10(10)2021 09 29.
Article en En | MEDLINE | ID: mdl-34685568
In this report, we present implementation and validation of machine-learning classifiers for distinguishing between cell types (HeLa, A549, 3T3 cell lines) and states (live, necrosis, apoptosis) based on the analysis of optical parameters derived from cell phase images. Validation of the developed classifier shows the accuracy for distinguishing between the three cell types of about 93% and between different cell states of the same cell line of about 89%. In the field test of the developed algorithm, we demonstrate successful evaluation of the temporal dynamics of relative amounts of live, apoptotic and necrotic cells after photodynamic treatment at different doses.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Células HeLa / Microscopía de Contraste de Fase / Línea Celular Tumoral / Aprendizaje Automático Límite: Humans Idioma: En Revista: Cells Año: 2021 Tipo del documento: Article País de afiliación: Rusia

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Células HeLa / Microscopía de Contraste de Fase / Línea Celular Tumoral / Aprendizaje Automático Límite: Humans Idioma: En Revista: Cells Año: 2021 Tipo del documento: Article País de afiliación: Rusia