Origin, loss, and regain of self-incompatibility in angiosperms.
Plant Cell
; 34(1): 579-596, 2022 01 20.
Article
en En
| MEDLINE
| ID: mdl-34735009
The self-incompatibility (SI) system with the broadest taxonomic distribution in angiosperms is based on multiple S-locus F-box genes (SLFs) tightly linked to an S-RNase termed type-1. Multiple SLFs collaborate to detoxify nonself S-RNases while being unable to detoxify self S-RNases. However, it is unclear how such a system evolved, because in an ancestral system with a single SLF, many nonself S-RNases would not be detoxified, giving low cross-fertilization rates. In addition, how the system has been maintained in the face of whole-genome duplications (WGDs) or lost in other lineages remains unclear. Here we show that SLFs from a broad range of species can detoxify S-RNases from Petunia with a high detoxification probability, suggestive of an ancestral feature enabling cross-fertilization and subsequently modified as additional SLFs evolved. We further show, based on its genomic signatures, that type-1 was likely maintained in many lineages, despite WGD, through deletion of duplicate S-loci. In other lineages, SI was lost either through S-locus deletions or by retaining duplications. Two deletion lineages regained SI through type-2 (Brassicaceae) or type-4 (Primulaceae), and one duplication lineage through type-3 (Papaveraceae) mechanisms. Thus, our results reveal a highly dynamic process behind the origin, maintenance, loss, and regain of SI.
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Magnoliopsida
/
Evolución Biológica
/
Células Germinativas de las Plantas
/
Autoincompatibilidad en las Plantas con Flores
Idioma:
En
Revista:
Plant Cell
Asunto de la revista:
BOTANICA
Año:
2022
Tipo del documento:
Article
País de afiliación:
China