Your browser doesn't support javascript.
loading
Atypical Dynamic Functional Network Connectivity State Engagement during Social-Emotional Processing in Schizophrenia and Autism.
Hyatt, Christopher J; Wexler, Bruce E; Pittman, Brian; Nicholson, Alycia; Pearlson, Godfrey D; Corbera, Silvia; Bell, Morris D; Pelphrey, Kevin; Calhoun, Vince D; Assaf, Michal.
Afiliación
  • Hyatt CJ; Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA.
  • Wexler BE; Department of Psychiatry, School of Medicine, Yale University, New Haven, CT 06510, USA.
  • Pittman B; Department of Psychiatry, School of Medicine, Yale University, New Haven, CT 06510, USA.
  • Nicholson A; Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA.
  • Pearlson GD; Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA.
  • Corbera S; Department of Psychiatry and Neuroscience, School of Medicine, Yale University, New Haven, CT 06510, USA.
  • Bell MD; Department of Psychiatry, School of Medicine, Yale University, New Haven, CT 06510, USA.
  • Pelphrey K; Department of Psychological Science, Central Connecticut State University, New Britain, CT 06050, USA.
  • Calhoun VD; Department of Psychiatry, School of Medicine, Yale University, New Haven, CT 06510, USA.
  • Assaf M; Department of Psychiatry, VA Connecticut Healthcare System West Haven, West Haven, CT 06516, USA.
Cereb Cortex ; 32(16): 3406-3422, 2022 08 03.
Article en En | MEDLINE | ID: mdl-34875687
Autism spectrum disorder (ASD) and schizophrenia (SZ) are separate clinical entities but share deficits in social-emotional processing and static neural functional connectivity patterns. We compared patients' dynamic functional network connectivity (dFNC) state engagement with typically developed (TD) individuals during social-emotional processing after initially characterizing such dynamics in TD. Young adults diagnosed with ASD (n = 42), SZ (n = 41), or TD (n = 55) completed three functional MRI runs, viewing social-emotional videos with happy, sad, or neutral content. We examined dFNC of 53 spatially independent networks extracted using independent component analysis and applied k-means clustering to windowed dFNC matrices, identifying four unique whole-brain dFNC states. TD showed differential engagement (fractional time, mean dwell time) in three states as a function of emotion. During Happy videos, patients spent less time than TD in a happy-associated state and instead spent more time in the most weakly connected state. During Sad videos, only ASD spent more time than TD in a sad-associated state. Additionally, only ASD showed a significant relationship between dFNC measures and alexithymia and social-emotional recognition task scores, potentially indicating different neural processing of emotions in ASD and SZ. Our results highlight the importance of examining temporal whole-brain reconfiguration of FNC, indicating engagement in unique emotion-specific dFNC states.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Esquizofrenia / Trastorno Autístico / Trastorno del Espectro Autista Tipo de estudio: Prognostic_studies Límite: Adult / Humans Idioma: En Revista: Cereb Cortex Asunto de la revista: CEREBRO Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Esquizofrenia / Trastorno Autístico / Trastorno del Espectro Autista Tipo de estudio: Prognostic_studies Límite: Adult / Humans Idioma: En Revista: Cereb Cortex Asunto de la revista: CEREBRO Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos