Your browser doesn't support javascript.
loading
A Hybrid Semi-Lagrangian Cut Cell Method for Advection-Diffusion Problems with Robin Boundary Conditions in Moving Domains.
Barrett, Aaron; Fogelson, Aaron L; Griffith, Boyce E.
Afiliación
  • Barrett A; Department of Mathematics, University of Utah, Salt Lake City, UT, USA.
  • Fogelson AL; Departments of Mathematics and Bioengineering, University of Utah, Salt Lake City, UT, USA.
  • Griffith BE; Departments of Mathematics, Applied Physical Sciences, and Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA.
J Comput Phys ; 4492022 Jan 15.
Article en En | MEDLINE | ID: mdl-34898720
We present a new discretization approach to advection-diffusion problems with Robin boundary conditions on complex, time-dependent domains. The method is based on second order cut cell finite volume methods introduced by Bochkov et al. [8] to discretize the Laplace operator and Robin boundary condition. To overcome the small cell problem, we use a splitting scheme along with a semi-Lagrangian method to treat advection. We demonstrate second order accuracy in the L 1, L 2, and L ∞ norms for both analytic test problems and numerical convergence studies. We also demonstrate the ability of the scheme to convert one chemical species to another across a moving boundary.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: J Comput Phys Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: J Comput Phys Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos