Your browser doesn't support javascript.
loading
MicroRNA let-7i inhibits granulosa-luteal cell proliferation and oestradiol biosynthesis by directly targeting IMP2.
Xu, Xiao; Shen, Hao-Ran; Yu, Min; Du, Mei-Rong; Li, Xue-Lian.
Afiliación
  • Xu X; Obstetrics and Gynecology Hospital, Fudan University Shanghai, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai, People's Republic of China.
  • Shen HR; Obstetrics and Gynecology Hospital, Fudan University Shanghai, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai, People's Republic of China.
  • Yu M; Obstetrics and Gynecology Hospital, Fudan University Shanghai, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai, People's Republic of China.
  • Du MR; Obstetrics and Gynecology Hospital, Fudan University Shanghai, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai, People's Republic of China. Electronic address: mrdu@fudan.edu.cn.
  • Li XL; Obstetrics and Gynecology Hospital, Fudan University Shanghai, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai, People's Republic of China. Electronic address: xllifc@fudan.edu.cn.
Reprod Biomed Online ; 44(5): 803-816, 2022 05.
Article en En | MEDLINE | ID: mdl-35339367
ABSTRACT
RESEARCH QUESTION Increased granulosa cell division is associated with abnormal folliculogenesis in polycystic ovary syndrome (PCOS). Lethal-7i microRNA (let-7i) may play an important role in the follicular development and granulosa cell growth; therefore is let-7i involved in PCOS pathogenesis?

DESIGN:

The expression of let-7i was measured in granulosa-luteal cells (GLC) from women with or without PCOS. A human granulosa cell line, KGN, was used for the functional study. Mimics and inhibitors of let-7i, lentiviruses expressing insulin-like growth factor 2 mRNA binding protein (IMP2), and small-interfering RNAs were transfected into KGN cells. KGN cell proliferation was determined by 5-ethynyl-2'-deoxyuridine (EdU) and Cell Counting Kit-8 (CCK-8) assays. The cell cycle and apoptosis were assessed by propidium iodide-annexin V (PI-A) staining and fluorescence-activated cell sorting. Oestradiol concentration was determined by enzyme-linked immunoassay. Bioinformatics analysis and luciferase reporter assay were applied to confirm the let-7i target genes.

RESULTS:

The study showed that let-7i was down-regulated in PCOS GLC (P = 0.001). Mimics of let-7i inhibited KGN proliferation (P = 0.001), and decreased aromatase expression (P = 0.030) and oestradiol production (P = 0.029), whereas let-7i inhibitors had the opposite effect. Bioinformatics analysis and quantitative real-time (qRT) PCR identified IMP2 as a target of let-7i (P = 0.021). qRT-PCR and western blot analysis indicated that IMP2 was up-regulated in GLC in women with PCOS (P = 0.001 and P = 0.044), and IMP2 expression was suppressed by let-7i in KGN cells (P < 0.001). Luciferase reporter assay results (P = 0.002), combined with the rescue assay, confirmed that let-7i inhibited KGN cell proliferation and reduced oestradiol concentration by directly targeting IMP2.

CONCLUSIONS:

let-7i was down-regulated in PCOS GLC. Overexpression of let-7i inhibited KGN cell proliferation and decreased oestradiol production in an IMP2-dependent manner, providing a new molecular mechanism for PCOS.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Síndrome del Ovario Poliquístico / MicroARNs / Células Lúteas Tipo de estudio: Prognostic_studies Límite: Female / Humans Idioma: En Revista: Reprod Biomed Online Asunto de la revista: MEDICINA REPRODUTIVA Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Síndrome del Ovario Poliquístico / MicroARNs / Células Lúteas Tipo de estudio: Prognostic_studies Límite: Female / Humans Idioma: En Revista: Reprod Biomed Online Asunto de la revista: MEDICINA REPRODUTIVA Año: 2022 Tipo del documento: Article