Machine learning models for prediction of adverse events after percutaneous coronary intervention.
Sci Rep
; 12(1): 6262, 2022 04 15.
Article
en En
| MEDLINE
| ID: mdl-35428765
An accurate prediction of major adverse events after percutaneous coronary intervention (PCI) improves clinical decisions and specific interventions. To determine whether machine learning (ML) techniques predict peri-PCI adverse events [acute kidney injury (AKI), bleeding, and in-hospital mortality] with better discrimination or calibration than the National Cardiovascular Data Registry (NCDR-CathPCI) risk scores, we developed logistic regression and gradient descent boosting (XGBoost) models for each outcome using data from a prospective, all-comer, multicenter registry that enrolled consecutive coronary artery disease patients undergoing PCI in Japan between 2008 and 2020. The NCDR-CathPCI risk scores demonstrated good discrimination for each outcome (C-statistics of 0.82, 0.76, and 0.95 for AKI, bleeding, and in-hospital mortality) with considerable calibration. Compared with the NCDR-CathPCI risk scores, the XGBoost models modestly improved discrimination for AKI and bleeding (C-statistics of 0.84 in AKI, and 0.79 in bleeding) but not for in-hospital mortality (C-statistics of 0.96). The calibration plot demonstrated that the XGBoost model overestimated the risk for in-hospital mortality in low-risk patients. All of the original NCDR-CathPCI risk scores for adverse periprocedural events showed adequate discrimination and calibration within our cohort. When using the ML-based technique, however, the improvement in the overall risk prediction was minimal.
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Lesión Renal Aguda
/
Intervención Coronaria Percutánea
Tipo de estudio:
Clinical_trials
/
Etiology_studies
/
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
Límite:
Female
/
Humans
/
Male
Idioma:
En
Revista:
Sci Rep
Año:
2022
Tipo del documento:
Article
País de afiliación:
Japón