Your browser doesn't support javascript.
loading
Development and Validation of a Prognostic Model to Predict High-Risk Patients for Coronary Heart Disease in Snorers With Uncontrolled Hypertension.
Wang, Meng-Hui; Heizhati, Mulalibieke; Li, Nan-Fang; Yao, Xiao-Guang; Luo, Qin; Lin, Meng-Yue; Hong, Jing; Ma, Yue; Wang, Run; Sun, Le; Ren, Ying-Li; Yue, Na.
Afiliación
  • Wang MH; Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China.
  • Heizhati M; Xinjiang Hypertension Institute, Ürümqi, China.
  • Li NF; National Health Committee Key Laboratory of Hypertension Clinical Research, Ürümqi, China.
  • Yao XG; Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China.
  • Luo Q; Xinjiang Hypertension Institute, Ürümqi, China.
  • Lin MY; National Health Committee Key Laboratory of Hypertension Clinical Research, Ürümqi, China.
  • Hong J; Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China.
  • Ma Y; Xinjiang Hypertension Institute, Ürümqi, China.
  • Wang R; National Health Committee Key Laboratory of Hypertension Clinical Research, Ürümqi, China.
  • Sun L; Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China.
  • Ren YL; Xinjiang Hypertension Institute, Ürümqi, China.
  • Yue N; National Health Committee Key Laboratory of Hypertension Clinical Research, Ürümqi, China.
Front Cardiovasc Med ; 9: 777946, 2022.
Article en En | MEDLINE | ID: mdl-35528833
Purpose: Snoring or obstructive sleep apnea, with or without uncontrolled hypertension, is common and significantly increases the risk of coronary heart disease (CHD). The aim of this study was to develop and validate a prognostic model to predict and identify high-risk patients for CHD among snorers with uncontrolled hypertension. Methods: Records from 1,822 snorers with uncontrolled hypertension were randomly divided into a training set (n = 1,275, 70%) and validation set (n = 547, 30%). Predictors for CHD were extracted to construct a nomogram model based on multivariate Cox regression analysis. We performed a single-split verification and 1,000 bootstraps resampling internal validation to assess the discrimination and consistency of the prediction model using area under the receiver operating characteristic curve (AUC) and calibration plots. Based on the linear predictors, a risk classifier for CHD could be set. Results: Age, waist circumference (WC), and high- and low-density lipoprotein cholesterol (HDL-C and LDL-C) were extracted as the predictors to generate this nomogram model. The C-index was 0.720 (95% confidence interval 0.663-0.777) in the derivation cohort and 0.703 (0.630-0.776) in the validation cohort. The AUC was 0.757 (0.626-0.887), 0.739 (0.647-0.831), and 0.732 (0.665-0.799) in the training set and 0.689 (0.542-0.837), 0.701 (0.606-0.796), and 0.712 (0.615-0.808) in the validation set at 3, 5, and 8 years, respectively. The calibration plots showed acceptable consistency between the probability of CHD-free survival and the observed CHD-free survival in the training and validation sets. A total of more than 134 points in the nomogram can be used in the identification of high-risk patients for CHD among snorers with uncontrolled hypertension. Conclusion: We developed a CHD risk prediction model in snorers with uncontrolled hypertension, which includes age, WC, HDL-C, and LDL-C, and can help clinicians with early and quick identification of patients with a high risk for CHD.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Front Cardiovasc Med Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Front Cardiovasc Med Año: 2022 Tipo del documento: Article País de afiliación: China