Your browser doesn't support javascript.
loading
Interpretable model-driven projected gradient descent network for high-quality fDOT reconstruction.
Opt Lett ; 47(10): 2538-2541, 2022 May 15.
Article en En | MEDLINE | ID: mdl-35561395
In fluorescence diffuse optical tomography (fDOT), the quality of reconstruction is severely limited by mismodeling and ill-posedness of inverse problems. Although data-driven deep learning methods improve the quality of image reconstruction, the network architecture lacks interpretability and requires a lot of data for training. We propose an interpretable model-driven projected gradient descent network (MPGD-Net) to improve the quality of fDOT reconstruction using only a few training samples. MPGD-Net unfolds projected gradient descent into a novel deep network architecture that is naturally interpretable. Simulation and in vivo experiments show that MPGD-Net greatly improves the fDOT reconstruction quality with superior generalization ability.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Tomografía Óptica Idioma: En Revista: Opt Lett Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Tomografía Óptica Idioma: En Revista: Opt Lett Año: 2022 Tipo del documento: Article