Your browser doesn't support javascript.
loading
Flexible and Precise Droplet Manipulation by a Laser-Induced Shape Temperature Field on a Lubricant-Infused Surface.
Sun, Xiaoyan; Kong, Dejian; Liang, Chang; Hu, Youwang; Duan, Ji-An.
Afiliación
  • Sun X; State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, Hunan, China.
  • Kong D; State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, Hunan, China.
  • Liang C; State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, Hunan, China.
  • Hu Y; State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, Hunan, China.
  • Duan JA; Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, Guangzhou 510610, China.
Langmuir ; 38(21): 6731-6740, 2022 05 31.
Article en En | MEDLINE | ID: mdl-35587878
ABSTRACT
Light actuation on a lubricant-infused surface (LIS) has attracted great attention because of its flexibility and remote control of droplet motion. However, to actuate a droplet on a LIS flexibly and precisely by light, the key issue is to control two degrees of freedom of the droplet motion in real time. In this paper, we propose a C-shape temperature field (CSTF) induced by rapid and selective laser irradiation on a LIS. The CSTF could not only manipulate a single droplet precisely and flexibly but also process multiple droplets automatically and orderly in real time. The mechanism showed that the droplet was confined by the Marangoni force in two orthogonal directions. For single droplet manipulation, the CSTF had the capability of correcting the off-track droplet motion. Moreover, the droplet motion, including rectilinear motion and curvilinear motion, could be precisely and flexibly controlled by the motion of the CSTF. For manipulation of multiple droplets, coalescence of multiple droplets was successfully achieved by triple rotating CSTFs. Such a method was applied in the detection of 5 µL of bovine serum albumin (BSA) by triggering chromogenic reactions automatically and orderly, which improved the efficiency of the whole process. We believe that this method is a significant candidate for intelligent droplet manipulation.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Lubricantes / Luz Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Lubricantes / Luz Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: China