Microfluidic Production of Zwitterion Coating Microcapsules with Low Foreign Body Reactions for Improved Islet Transplantation.
Small
; 18(29): e2202596, 2022 07.
Article
en En
| MEDLINE
| ID: mdl-35733079
Islet transplantation is a promising strategy for type 1 diabetes mellitus (T1DM) treatment, whereas implanted-associated foreign body reaction (FBR) usually induces the necrosis of transplanted islets and leads to the failure of glycemic control. Benefiting from the excellent anti-biofouling property of zwitterionic materials and their successful application in macroscopic implanted devices, microcapsules with zwitterionic coatings may be promising candidates for islet encapsulation. Herein, a series of zwitterion-coated core-shell microcapsules is fabricated (including carboxybetaine methacrylate [CBMA]-coated gelatin methacrylate [GelMA] [CBMA-GelMA], sulfobetaine methacrylate [SBMA]-coated GelMA [SBMA-GelMA], and phosphorylcholine methacrylate [MPC]-coated GelMA [MPC-GelMA]) by one-step photopolymerization of inner GelMA and outer zwitterionic monomers via a handmade two-fluid microfluidic device and it is demonstrated that they can effectively prevent protein adsorption, cell adhesion, and inflammation in vitro. Interestingly, the zwitterionic microcapsules successfully resist FBR in C57BL/6 mice after intraperitoneal implantation for up to 4 months. After successfully encapsulating xenogeneic rat islets in the SBMA-GelMA microcapsules, sustained normoglycemia is further validated in streptozotocin (STZ)-induced mice for up to 3 months. The zwitterion-modified microcapsule using a microfluidic device may represent a platform for cell encapsulation treatment for T1DM and other hormone-deficient diseases.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Trasplante de Islotes Pancreáticos
/
Diabetes Mellitus Tipo 1
Límite:
Animals
Idioma:
En
Revista:
Small
Asunto de la revista:
ENGENHARIA BIOMEDICA
Año:
2022
Tipo del documento:
Article
País de afiliación:
China