Your browser doesn't support javascript.
loading
Novel Polyurethane Scaffolds Containing Sucrose Crosslinker for Dental Application.
Kordován, Marcell Árpád; Hegedus, Csaba; Czifrák, Katalin; Lakatos, Csilla; Kálmán-Szabó, Ibolya; Daróczi, Lajos; Zsuga, Miklós; Kéki, Sándor.
Afiliación
  • Kordován MÁ; Department of Applied Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
  • Hegedus C; Doctoral School of Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
  • Czifrák K; Department of Prosthetic Dentistry and Biomaterials, Faculty of Dentistry, University of Debrecen, H-4012 Debrecen, Hungary.
  • Lakatos C; Department of Applied Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
  • Kálmán-Szabó I; Department of Applied Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
  • Daróczi L; Department of Prosthetic Dentistry and Biomaterials, Faculty of Dentistry, University of Debrecen, H-4012 Debrecen, Hungary.
  • Zsuga M; Department of Solid State Physics, University of Debrecen, Bem tér 18/b, H-4026 Debrecen, Hungary.
  • Kéki S; Department of Applied Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
Int J Mol Sci ; 23(14)2022 Jul 18.
Article en En | MEDLINE | ID: mdl-35887250
In this paper, the synthesis, characterization, and properties of crosslinked poly(ε-caprolactone)-based polyurethanes as potential tissue replacement materials are reported. The polyurethane prepolymers were prepared from poly(ε-caprolactone)diol (PCD), polyethylene glycol (PEG)/polylactic acid diol (PLAD), and 1,6-hexamethylene diisocyanate (HDI). In these segmented polyurethanes, the role of PEG/PLAD was to tune the hydrophobic/hydrophilic character of the resulting polymer while sucrose served as a crosslinking agent. PLAD was synthesized by the polycondensation reaction of D,L-lactic acid and investigated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and nuclear magnetic resonance spectroscopy (NMR). The crosslinked polyurethane samples (SUPURs) obtained were characterized by attenuated total reflectance Fourier-transform infrared spectroscopy (AT-FT-IR), swelling, and mechanical (uniaxial tensile tests) experiments. The thermo and thermomechanical behavior were studied by differential scanning calorimetry (DSC) and dynamical mechanical analysis (DMA). The viability of dental pulp stem cells was investigated in the case of polyurethanes composed of fully biocompatible elements. In our studies, none of our polymers showed toxicity to stem cells (DPSCs).
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Poliuretanos / Sacarosa Idioma: En Revista: Int J Mol Sci Año: 2022 Tipo del documento: Article País de afiliación: Hungria

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Poliuretanos / Sacarosa Idioma: En Revista: Int J Mol Sci Año: 2022 Tipo del documento: Article País de afiliación: Hungria