A pH-Responsive Cluster Metal-Organic Framework Nanoparticle for Enhanced Tumor Accumulation and Antitumor Effect.
Adv Mater
; 34(42): e2203915, 2022 Oct.
Article
en En
| MEDLINE
| ID: mdl-35985348
As a result of the deficient tumor-specific antigens, potential off-target effect, and influence of protein corona, metal-organic framework nanoparticles have inadequate accumulation in tumor tissues, limiting their therapeutic effects. In this work, a pH-responsive linker (L) is prepared by covalently modifying oleylamine (OA) with 3-(bromomethyl)-4-methyl-2,5-furandione (MMfu) and poly(ethylene glycol) (PEG). Then, the L is embedded into a solid lipid nanoshell to coat apilimod (Ap)-loaded zeolitic imidazolate framework (Ap-ZIF) to form Ap-ZIF@SLN#L. Under the tumor microenvironment, the hydrophilic PEG and MMfu are removed, exposing the hydrophobic OA on Ap-ZIF@SLN#L, increasing their uptake in cancer cells and accumulation in the tumor. The ZIF@SLN#L nanoparticle induces reactive oxygen species (ROS). Ap released from Ap-ZIF@SLN#L significantly promotes intracellular ROS and lactate dehydrogenase generation. Ap-ZIF@SLN#L inhibits tumor growth, increases the survival rate in mice, activates the tumor microenvironment, and improves the infiltration of macrophages and T cells in the tumor, as demonstrated in two different tumor-bearing mice after injections with Ap-ZIF@SLN#TL. Furthermore, mice show normal tissue structure of the main organs and the normal serum level in alanine aminotransferase and aspartate aminotransferase after treatment with the nanoparticles. Overall, this pH-responsive targeting strategy improves nanoparticle accumulation in tumors with enhanced therapeutic effects.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Zeolitas
/
Nanopartículas
/
Corona de Proteínas
/
Estructuras Metalorgánicas
/
Neoplasias
Límite:
Animals
Idioma:
En
Revista:
Adv Mater
Asunto de la revista:
BIOFISICA
/
QUIMICA
Año:
2022
Tipo del documento:
Article