Your browser doesn't support javascript.
loading
Multilayer Multiconfiguration Time-Dependent Hartree Study on the Mode-/Bond-Specific Quantum Dynamics of Water Dissociation on Cu(111).
Song, Qingfei; Zhang, Xingyu; Gatti, Fabien; Miao, Zekai; Zhang, Qiuyu; Meng, Qingyong.
Afiliación
  • Song Q; Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
  • Zhang X; Institut des Sciences Moléculaires d'Orsay, CNRS-UMR 8214, Université Paris-Saclay, Bâtiment 520, F-91405 Orsay, France.
  • Gatti F; Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
  • Miao Z; Institut des Sciences Moléculaires d'Orsay, CNRS-UMR 8214, Université Paris-Saclay, Bâtiment 520, F-91405 Orsay, France.
  • Zhang Q; Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
  • Meng Q; Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
J Phys Chem A ; 126(36): 6047-6058, 2022 Sep 15.
Article en En | MEDLINE | ID: mdl-36054932
ABSTRACT
In this work, full-dimensional (9D) quantum dynamics calculations on mode-/bond-specific surface scattering of a water molecule on a copper (111) rigid surface are performed through the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method. To easily perform the ML-MCTDH calculations on such a triatomic molecule-surface system, we first choose specific Jacobi coordinates as a set of coordinates of water. Next, to efficiently perform the 9D ML-MCTDH wavepacket propagation, the potential energy surface is transferred to a canonical polyadic decomposition form with the aid of a Monte Carlo-based method. Excitation-specific dissociation probabilities of H2O on Cu(111) are computed, and mode-/bond-specific dynamics are demonstrated by comparison with a probability curve computed for a water molecule in the ground state. The dependence of the dissociation probability of the initial state of H2O is studied, and it is found that the excitation-specific dissociation probabilities can be divided into three groups. We find that the vibrationally excited states enhance the dissociation reactivity of H2O, while the rotationally excited states hardly influence it.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: J Phys Chem A Asunto de la revista: QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: J Phys Chem A Asunto de la revista: QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: China