Your browser doesn't support javascript.
loading
Synergistic effect of yeast integrated with alkyl polyglucose for short-chain fatty acids production from sludge anaerobic fermentation.
Lv, Jinghua; Yao, Lirong; Liang, Yuge; He, Siqi; Zhang, Shujia; Shi, Tianyu; Gong, Li; Li, Hailong; Li, Yunbei; Yu, Tonghuan; Zhang, Yanzhuo.
Afiliación
  • Lv J; School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China. Electronic address: lvjinghua@htu.edu.cn.
  • Yao L; School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China.
  • Liang Y; School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China.
  • He S; School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China.
  • Zhang S; School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China.
  • Shi T; School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China.
  • Gong L; School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China.
  • Li H; School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China.
  • Li Y; School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China.
  • Yu T; School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China.
  • Zhang Y; School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China.
Bioresour Technol ; 364: 128092, 2022 Nov.
Article en En | MEDLINE | ID: mdl-36229007
An efficient strategy for short-chain fatty acid (SCFA) production from sludge anaerobic fermentation was proposed with the combination of yeast and alkyl polyglucose (APG). It revealed that the synergetic effect of yeast and APG could boost the SCFA concentration to the maximum value of 2800.34 mg COD/L within 9 days at 0.20 g/g suspended solids (SS) yeast and 0.20 g/g SS APG, which was significantly higher than that of its counterparts. Interestingly, the sludge solubilization, the biodegradability of fermentation substrate, as well as the acidification of hydrolyzed products, was evidently improved in the coexistence of APG and yeast. The activities of hydrolytic enzymes and acetate kinase were also stimulated, whereas the coenzyme F420 was inhibited. The synergetic effect of yeast and APG used in this work enriches the study of carbon resource recovery from sludge anaerobic fermentation.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Bioresour Technol Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Bioresour Technol Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article