Your browser doesn't support javascript.
loading
Formulation of Silk Fibroin Nanobrush-Stabilized Biocompatible Pickering Emulsions.
Hu, Yanlei; Zou, Yujun; Ma, Yue; Yu, Juan; Liu, Liang; Chen, Meijuan; Ling, Shengjie; Fan, Yimin.
Afiliación
  • Hu Y; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No. 159 Lonpan Road, Nanjing210037, Jiangsu, China.
  • Zou Y; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No. 159 Lonpan Road, Nanjing210037, Jiangsu, China.
  • Ma Y; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No. 159 Lonpan Road, Nanjing210037, Jiangsu, China.
  • Yu J; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No. 159 Lonpan Road, Nanjing210037, Jiangsu, China.
  • Liu L; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No. 159 Lonpan Road, Nanjing210037, Jiangsu, China.
  • Chen M; Jiangsu Opera Medical Supplies Co., Ltd., Gaoyou225600, Jiangsu, China.
  • Ling S; School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China.
  • Fan Y; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No. 159 Lonpan Road, Nanjing210037, Jiangsu, China.
Langmuir ; 38(46): 14302-14312, 2022 11 22.
Article en En | MEDLINE | ID: mdl-36342842
ABSTRACT
Silk fibroin is widely believed to be sustainable, biocompatible, and biodegradable, providing promising features such as carriers to deliver drugs and functional ingredients in food, personal care, and biomedical areas, which are consistent with emulsion characteristics; especially, green, all-natural biopolymer-based stabilizers are in great demand to stabilize Pickering emulsions and match the multifunctional needs for developing ideal materials. Herein, an unprecedented three-dimensional (3D) nanostructure, namely a brush-like silk nanobrush (SNB), is applied as the stabilizer to formulate and stabilize Pickering emulsions. The size and interfacial tension are compared among the SNB, a regenerated silk nanofiber, and a nanowhisker. Additionally, optimization processes are conducted to determine the ideal ultrasonication intensity and SNB concentration required to prepare Pickering emulsions by analyzing the morphology, creaming index, mean oil droplet size, and rheological behavior. The results indicate that an SNB with the characteristic structure and suitable size shows superior potential to form sophisticated and interconnected networks in oil-water interfaces, and is proved to be able to resist creaming at a wide range of concentrations and subsequently stabilize Pickering emulsions from liquid-like emulsions to gel-like emulsions. Additionally, SNB is proved to be biocompatible according to cell experiments, providing a promising alternative in designing all-natural, green, and biocompatible emulsions with the aim of efficiently delivering nutrients or drugs associated with health benefits.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Fibroínas Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Fibroínas Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: China