Single-nucleus RNA-seq reveals that MBD5, MBD6, and SILENZIO maintain silencing in the vegetative cell of developing pollen.
Cell Rep
; 41(8): 111699, 2022 11 22.
Article
en En
| MEDLINE
| ID: mdl-36417865
Silencing of transposable elements (TEs) drives the evolution of numerous redundant mechanisms of transcriptional regulation. Arabidopsis MBD5, MBD6, and SILENZIO act as TE repressors downstream of DNA methylation. Here, we show, via single-nucleus RNA-seq of developing male gametophytes, that these repressors are critical for TE silencing in the pollen vegetative cell, a companion cell important for fertilization that undergoes chromatin decompaction. Instead, other silencing mutants (met1, ddm1, mom1, morc) show loss of silencing in all pollen nucleus types and somatic cells. We show that TEs repressed by MBD5/6 gain chromatin accessibility in wild-type vegetative nuclei despite remaining silent, suggesting that loss of DNA compaction makes them sensitive to loss of MBD5/6. Consistently, crossing mbd5/6 to histone 1 mutants, which have decondensed chromatin in leaves, reveals derepression of MBD5/6-dependent TEs in leaves. MBD5/6 and SILENZIO thus act as a silencing system particularly important when chromatin compaction is compromised.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Arabidopsis
/
Proteínas de Arabidopsis
Idioma:
En
Revista:
Cell Rep
Año:
2022
Tipo del documento:
Article
País de afiliación:
Estados Unidos