Your browser doesn't support javascript.
loading
Virtual Axle Detector Based on Analysis of Bridge Acceleration Measurements by Fully Convolutional Network.
Lorenzen, Steven Robert; Riedel, Henrik; Rupp, Maximilian Michael; Schmeiser, Leon; Berthold, Hagen; Firus, Andrei; Schneider, Jens.
Afiliación
  • Lorenzen SR; Institute for Structural Mechanics and Design, Technical University of Darmstadt, 64287 Darmstadt, Germany.
  • Riedel H; Institute for Structural Mechanics and Design, Technical University of Darmstadt, 64287 Darmstadt, Germany.
  • Rupp MM; Institute for Structural Mechanics and Design, Technical University of Darmstadt, 64287 Darmstadt, Germany.
  • Schmeiser L; Institute for Structural Mechanics and Design, Technical University of Darmstadt, 64287 Darmstadt, Germany.
  • Berthold H; Institute for Structural Mechanics and Design, Technical University of Darmstadt, 64287 Darmstadt, Germany.
  • Firus A; iSEA Tec GmbH, 88046 Friedrichshafen, Germany.
  • Schneider J; Institute for Structural Mechanics and Design, Technical University of Darmstadt, 64287 Darmstadt, Germany.
Sensors (Basel) ; 22(22)2022 Nov 19.
Article en En | MEDLINE | ID: mdl-36433559
In the practical application of the Bridge Weigh-In-Motion (BWIM) methods, the position of the wheels or axles during the passage of a vehicle is a prerequisite in most cases. To avoid the use of conventional axle detectors and bridge type-specific methods, we propose a novel method for axle detection using accelerometers placed arbitrarily on a bridge. In order to develop a model that is as simple and comprehensible as possible, the axle detection task is implemented as a binary classification problem instead of a regression problem. The model is implemented as a Fully Convolutional Network to process signals in the form of Continuous Wavelet Transforms. This allows passages of any length to be processed in a single step with maximum efficiency while utilising multiple scales in a single evaluation. This allows our method to use acceleration signals from any location on the bridge structure and act as Virtual Axle Detectors (VADs) without being limited to specific structural types of bridges. To test the proposed method, we analysed 3787 train passages recorded on a steel trough railway bridge of a long-distance traffic line. Results of the measurement data show that our model detects 95% of the axles, which means that 128,599 out of 134,800 previously unseen axles were correctly detected. In total, 90% of the axles were detected with a maximum spatial error of 20 cm, at a maximum velocity of vmax=56.3m/s. The analysis shows that our developed model can use accelerometers as VADs even under real operating conditions.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Sensors (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Sensors (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Alemania