Your browser doesn't support javascript.
loading
Hybrid core-shell particles for mRNA systemic delivery.
Andretto, Valentina; Repellin, Mathieu; Pujol, Marine; Almouazen, Eyad; Sidi-Boumedine, Jacqueline; Granjon, Thierry; Zhang, Heyang; Remaut, Katrien; Jordheim, Lars Petter; Briançon, Stéphanie; Keil, Isabell Sofia; Vascotto, Fulvia; Walzer, Kerstin C; Sahin, Ugur; Haas, Heinrich; Kryza, David; Lollo, Giovanna.
Afiliación
  • Andretto V; Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France.
  • Repellin M; Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France.
  • Pujol M; Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France.
  • Almouazen E; Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France.
  • Sidi-Boumedine J; Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France.
  • Granjon T; Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Université de Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France.
  • Zhang H; Ghent Research Group on Nanomedicine, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
  • Remaut K; Ghent Research Group on Nanomedicine, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
  • Jordheim LP; Univ. Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France.
  • Briançon S; Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France.
  • Keil IS; TRON Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Mainz, Germany.
  • Vascotto F; TRON Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Mainz, Germany.
  • Walzer KC; BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany.
  • Sahin U; BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany.
  • Haas H; BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany.
  • Kryza D; Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France; Hospices Civils de Lyon, 69437 Lyon, France.
  • Lollo G; Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France. Electronic address: giovanna.lollo@univ-lyon1.fr.
J Control Release ; 353: 1037-1049, 2023 01.
Article en En | MEDLINE | ID: mdl-36442614
ABSTRACT
mRNA based infectious disease vaccines have opened the venue for development of novel nucleic acids-based therapeutics. For all mRNA therapeutics dedicated delivery systems are required, where different functionalities and targeting abilities need to be optimized for the respective applications. One option for advanced formulations with tailored properties are lipid-polymer hybrid nanoparticles with complex nanostructure, which allow to combine features of several already well described nucleic acid delivery systems. Here, we explored hyaluronic acid (HA) as coating of liposome-mRNA complexes (LRCs) to investigate effects of the coating on surface charge, physicochemical characteristics and biological activity. HA was electrostatically attached to positively charged complexes, forming hybrid LRCs (HLRCs). At different N/P ratios, physico-chemical characterization of the two sets of particles showed similarity in size (around 200 nm) and mRNA binding abilities, while the presence of the HA shell conferred a negative surface charge to otherwise positive complexes. High transfection efficiency of LRCs and HLRCs in vitro has been obtained in THP-1 and human monocytes derived from PBMC, an interesting target cell population for cancer and immune related pathologies. In mice, quantitative biodistribution of radiolabeled LRC and HLRC particles, coupled with bioluminescence studies to detect the protein translation sites, hinted towards both particles' accumulation in the hepatic reticuloendothelial system (RES). mRNA translated proteins though was found mainly in the spleen, a major source for immune cells, with preference for expression in macrophages. The results showed that surface modifications of liposome-mRNA complexes can be used to fine-tune nanoparticle physico-chemical characteristics. This provides a tool for assembly of stable and optimized nanoparticles, which are prerequisite for future therapeutic interventions using mRNA-based nanomedicines.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Ácidos Nucleicos / Nanopartículas Límite: Animals / Humans Idioma: En Revista: J Control Release Asunto de la revista: FARMACOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Ácidos Nucleicos / Nanopartículas Límite: Animals / Humans Idioma: En Revista: J Control Release Asunto de la revista: FARMACOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Francia