Your browser doesn't support javascript.
loading
"Gingival Soft Tissue Integrative" Lithium Disilicate Glass-Ceramics with High Mechanical Properties and Sustained-Release Lithium Ions.
Shan, Zhengjie; Xie, Lv; Liu, Haiwen; Shi, Jiamin; Zeng, Peisheng; Gui, Mixiao; Wei, Xianzhe; Huang, Zhuwei; Gao, Guangqi; Chen, Shijie; Chen, Shoucheng; Chen, Zetao.
Afiliación
  • Shan Z; Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China.
  • Xie L; Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, No. 74, Zhongshan Second Road, Guangzhou510080, China.
  • Liu H; Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China.
  • Shi J; Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China.
  • Zeng P; Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China.
  • Gui M; Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China.
  • Wei X; Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China.
  • Huang Z; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, No. 1219, Zhongguan West Road, Ningbo315201, China.
  • Gao G; Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China.
  • Chen S; Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China.
  • Chen S; Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China.
  • Chen Z; Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China.
ACS Appl Mater Interfaces ; 14(49): 54572-54586, 2022 Dec 14.
Article en En | MEDLINE | ID: mdl-36468286
ABSTRACT
Due to their good mechanical performances and high biocompatibility, all-ceramic materials are widely applied in clinics, especially in orthopedic and dental areas. However, the "hard" property negatively affects its integration with "soft" tissue, which greatly limits its application in soft tissue-related areas. For example, dental implant all-ceramic abutments should be well integrated with the surrounding gingival soft tissue to prevent the invasion of bacteria. Mimicking the gingival soft tissue and dentine integration progress, we applied the modified ion-exchange technology to "activate" the biological capacity of lithium disilicate glass-ceramics, via introducing OH- to weaken the stability of Si-O bonds and release lithium ions to promote multi-reparative functions of gingival fibroblasts. The underlying mechanism was found to be closely related to the activation of mitochondrial activity and oxidative phosphorylation. In addition, during the ion-exchange process, the larger radius sodium ions (Na+) replaced the smaller radius lithium ions (Li+), so that the residual compressive stress was applied to the glass-ceramics surface to counteract the tensile stress, thus improving the mechanical properties. This successful case in simultaneous improvement of mechanical properties and biological activities proves the feasibility of developing "soft tissue integrative" all-ceramic materials with high mechanical properties. It proposes a new strategy to develop advanced bioactive and high strength all-ceramic materials by modified ion-exchange, which can pave the way for the extended applications of such all-ceramic materials in soft tissue-related areas.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Cerámica / Litio Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Cerámica / Litio Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: China