Daily resting-state intracranial EEG connectivity for seizure risk forecasts.
Epilepsia
; 64(2): e23-e29, 2023 02.
Article
en En
| MEDLINE
| ID: mdl-36481871
Forecasting seizure risk aims to detect proictal states in which seizures would be more likely to occur. Classical seizure prediction models are trained over long-term electroencephalographic (EEG) recordings to detect specific preictal changes for each seizure, independently of those induced by shifts in states of vigilance. A daily single measure-during a vigilance-controlled period-to estimate the risk of upcoming seizure(s) would be more convenient. Here, we evaluated whether intracranial EEG connectivity (phase-locking value), estimated from daily vigilance-controlled resting-state recordings, could allow distinguishing interictal (no seizure) from preictal (seizure within the next 24 h) states. We also assessed its relevance for daily forecasts of seizure risk using machine learning models. Connectivity in the theta band was found to provide the best prediction performances (area under the curve ≥ .7 in 80% of patients), with accurate daily and prospective probabilistic forecasts (mean Brier score and Brier skill score of .13 and .72, respectively). More efficient ambulatory clinical application could be considered using mobile EEG or chronic implanted devices.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Convulsiones
/
Electrocorticografía
Tipo de estudio:
Etiology_studies
/
Prognostic_studies
/
Risk_factors_studies
Límite:
Humans
Idioma:
En
Revista:
Epilepsia
Año:
2023
Tipo del documento:
Article
País de afiliación:
Francia