Your browser doesn't support javascript.
loading
Rich dynamics and functional organization on topographically designed neuronal networks in vitro.
Montalà-Flaquer, Marc; López-León, Clara F; Tornero, Daniel; Houben, Akke Mats; Fardet, Tanguy; Monceau, Pascal; Bottani, Samuel; Soriano, Jordi.
Afiliación
  • Montalà-Flaquer M; Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain.
  • López-León CF; Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain.
  • Tornero D; Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain.
  • Houben AM; Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain.
  • Fardet T; Laboratory of Neural Stem Cells and Brain Damage, Institute of Neurosciences, University of Barcelona, E-08036 Barcelona, Spain.
  • Monceau P; Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain.
  • Bottani S; Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain.
  • Soriano J; Laboratoire Matière et Systèmes Complexes, Université de Paris, UMR 7057 CNRS, Paris, France.
iScience ; 25(12): 105680, 2022 Dec 22.
Article en En | MEDLINE | ID: mdl-36567712
Neuronal cultures are a prominent experimental tool to understand complex functional organization in neuronal assemblies. However, neurons grown on flat surfaces exhibit a strongly coherent bursting behavior with limited functionality. To approach the functional richness of naturally formed neuronal circuits, here we studied neuronal networks grown on polydimethylsiloxane (PDMS) topographical patterns shaped as either parallel tracks or square valleys. We followed the evolution of spontaneous activity in these cultures along 20 days in vitro using fluorescence calcium imaging. The networks were characterized by rich spatiotemporal activity patterns that comprised from small regions of the culture to its whole extent. Effective connectivity analysis revealed the emergence of spatially compact functional modules that were associated with both the underpinned topographical features and predominant spatiotemporal activity fronts. Our results show the capacity of spatial constraints to mold activity and functional organization, bringing new opportunities to comprehend the structure-function relationship in living neuronal circuits.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: IScience Año: 2022 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: IScience Año: 2022 Tipo del documento: Article País de afiliación: España