Your browser doesn't support javascript.
loading
Exploring Intestinal Surface Receptors in Oral Nanoinsulin Delivery.
Choy, Carlynne; Lim, Lee Yong; Chan, Lai Wah; Cui, Zhixiang; Mao, Shirui; Wong, Tin Wui.
Afiliación
  • Choy C; Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore (C.C., L.W.C., T.W.W.); Pharmacy, School of Allied Health, The University of Western Australia, 35 Stirling Highway, Crawley WA, Australia (L.Y.L.); School of Pharmacy, Shenyang Pharmaceutical Univers
  • Lim LY; Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore (C.C., L.W.C., T.W.W.); Pharmacy, School of Allied Health, The University of Western Australia, 35 Stirling Highway, Crawley WA, Australia (L.Y.L.); School of Pharmacy, Shenyang Pharmaceutical Univers
  • Chan LW; Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore (C.C., L.W.C., T.W.W.); Pharmacy, School of Allied Health, The University of Western Australia, 35 Stirling Highway, Crawley WA, Australia (L.Y.L.); School of Pharmacy, Shenyang Pharmaceutical Univers
  • Cui Z; Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore (C.C., L.W.C., T.W.W.); Pharmacy, School of Allied Health, The University of Western Australia, 35 Stirling Highway, Crawley WA, Australia (L.Y.L.); School of Pharmacy, Shenyang Pharmaceutical Univers
  • Mao S; Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore (C.C., L.W.C., T.W.W.); Pharmacy, School of Allied Health, The University of Western Australia, 35 Stirling Highway, Crawley WA, Australia (L.Y.L.); School of Pharmacy, Shenyang Pharmaceutical Univers
  • Wong TW; Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore (C.C., L.W.C., T.W.W.); Pharmacy, School of Allied Health, The University of Western Australia, 35 Stirling Highway, Crawley WA, Australia (L.Y.L.); School of Pharmacy, Shenyang Pharmaceutical Univers
Pharmacol Rev ; 74(4): 962-983, 2022 10.
Article en En | MEDLINE | ID: mdl-36779351
ABSTRACT
Subcutaneous and inhaled insulins are associated with needle phobia, lipohypertrophy, lipodystrophy, and cough in diabetes treatment. Oral nanoinsulin has been developed, reaping the physiologic benefits of peroral administration. This review profiles intestinal receptors exploitable in targeted delivery of oral nanoinsulin. Intestinal receptor targeting improves oral insulin bioavailability and sustains blood glucose-lowering response. Nonetheless, these studies are conducted in small animal models with no optimization of insulin dose, targeting ligand type and content, and physicochemical and molecular biologic characteristics of nanoparticles against the in vivo/clinical diabetes responses as a function of the intestinal receptor population characteristics with diabetes progression. The interactive effects between nanoinsulin and antidiabetic drugs on intestinal receptors, including their up-/downregulation, are uncertain. Sweet taste receptors upregulate SGLT-1, and both have an undefined role as new intestinal targets of nanoinsulin. Receptor targeting of oral nanoinsulin represents a viable approach that is relatively green, requiring an in-depth development of the relationship between receptors and their pathophysiological profiles with physicochemical attributes of the oral nanoinsulin. SIGNIFICANCE STATEMENT Intestinal receptor targeting of oral nanoinsulin improves its bioavailability with sustained blood glucose-lowering response. Exploring new intestinal receptor and tailoring the design of oral nanoinsulin to the pathophysiological state of diabetic patients is imperative to raise the insulin performance to a comparable level as the injection products.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Diabetes Mellitus / Nanopartículas / Insulina Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Pharmacol Rev Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Diabetes Mellitus / Nanopartículas / Insulina Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Pharmacol Rev Año: 2022 Tipo del documento: Article