Your browser doesn't support javascript.
loading
Whole Genome Sequence of an Edible Mushroom Oudemansiella raphanipes (Changgengu).
Zhu, Liping; Gao, Xia; Zhang, Meihua; Hu, Chunhui; Yang, Wujie; Guo, Lizhong; Yang, Song; Yu, Hailong; Yu, Hao.
Afiliación
  • Zhu L; Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China.
  • Gao X; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
  • Zhang M; Shandong Agricultural Technology Extending Station, Jinan 250100, China.
  • Hu C; Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China.
  • Yang W; Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China.
  • Guo L; Shandong Agricultural Technology Extending Station, Jinan 250100, China.
  • Yang S; Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China.
  • Yu H; Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China.
  • Yu H; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
J Fungi (Basel) ; 9(2)2023 Feb 16.
Article en En | MEDLINE | ID: mdl-36836380
ABSTRACT
Oudemansiella raphanipes, considered as a well-known culinary edible mushroom with a high content of natural bioactive substances, is widely cultivated in China with the commercial name Changgengu. However, due to the lack of genomic data, molecular and genetic study on O. raphanipes is rare. To obtain a comprehensive overview of genetic characteristics and enhance the value of O. raphanipes, two mating-compatible monokaryons isolated from the dikaryon were applied for de novo genome sequencing and assembly using Nanopore and /or Illumina sequencing platforms. One of the monokaryons, O. raphanipes CGG-A-s1, was annotated with 21,308 protein-coding genes, of which 56 were predicted to be involved in the biosynthesis of secondary metabolites such as terpene, type I PKS, NRPS, and siderophore. Phylogenetic and comparative analysis of multiple fungi genomes revealed a close evolutionary relationship between O. raphanipes and Mucidula mucid based on single-copy orthologous protein genes. Significant collinearity was detected between O. raphanipes and Flammulina velutipes on the synteny of inter-species genomes. 664 CAZyme genes in CGG-A-s1 were identified with GHs and AAs families significantly elevated when compared with the other 25 sequenced fungi, indicating a strong wood degradation ability. Furthermore, the mating type locus analysis revealed that CGG-A-s1 and CGG-A-s2 were conserved in the gene organization of the mating A locus but various in that of the mating B locus. The genome resource of O. raphanipes will provide new insights into its development of genetic studies and commercial production of high-quality varieties.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Fungi (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Fungi (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China