Polarization-sensitive narrowband infrared photodetection triggered by optical Tamm state engineering.
Opt Express
; 31(5): 8797-8804, 2023 Feb 27.
Article
en En
| MEDLINE
| ID: mdl-36859987
Polarization-sensitive narrowband photodetection at near-infrared (NIR) has attracted significant interest in optical communication, environmental monitoring, and intelligent recognition system. However, the current narrowband spectroscopy heavily relies on the extra filter or bulk spectrometer, which deviates from the miniaturization of on-chip integration. Recently, topological phenomena, such as the optical Tamm state (OTS), provided a new solution for developing functional photodetection, and we experimentally realized the device based on 2D material (graphene) for the first time to the best of our knowledge. Here, we demonstrate polarization-sensitive narrowband infrared photodetection in OTS coupled graphene devices, which are designed with the aid of the finite-difference time-domain (FDTD) method. The devices show narrowband response at NIR wavelengths empowered by the tunable Tamm state. The full width at half maximum (FWHM) of the response peak reaches â¼100â
nm, and it can potentially be improved to ultra-narrow of about 10â
nm by increasing the periods of dielectric distributed Bragg reflector (DBR). The responsivity and response time of the device reaches 187â
mA/W and â¼290 µs at 1550â
nm, respectively. Furthermore, the prominent anisotropic features and high dichroic ratios of â¼4.6 at 1300â
nm and â¼2.5 at 1500â
nm are achieved by integrating gold metasurfaces.
Texto completo:
1
Banco de datos:
MEDLINE
Tipo de estudio:
Diagnostic_studies
Idioma:
En
Revista:
Opt Express
Asunto de la revista:
OFTALMOLOGIA
Año:
2023
Tipo del documento:
Article